Skip to main content
Log in

Development and validation of a simple, rapid and sensitive LC-MS/MS method for the measurement of urinary neurotransmitters and their metabolites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Neurotransmitters play crucial roles in physiological functions and their imbalances have demonstrated association in the pathology of several diseases. The measurement of neurotransmitters possesses a great potential as a significant clinical tool. This study presents the development and validation of an LC-MS/MS method for simultaneous quantification of multi-class neurotransmitters associated with dopamine, tryptophan and glutamate-γ-aminobutyric acid pathways. A total of ten neurotransmitters and their metabolites (dopamine, epinephrine, metanephrine, tryptophan, serotonin, kynurenic acid, kynurenine, anthranilic acid, GABA, glutamic acid) were determined based on a simple and rapid ‘dilute and shoot’ method using minimal urine volume. The chromatographic separation was achieved using a Poroshell 120 Bonus-RP LC Column in combination with a gradient elution within an 8.5-min time frame. The method exhibited good sensitivity as the limits of quantification ranged between 0.025 and 0.075 μg/mL with acceptable matrix effects (< ± 14.5%), no carryover and good linearity (r 2 > 0.98). The accuracy and precision for all analytes were within tolerances, at < ± 9.9% mean relative error (MRE) and < 8.6% relative standard deviation (RSD), respectively. The method was successfully applied in measuring the neurotransmitter concentrations in urine of healthy donors. Furthermore, the undertaken stability experiments indicated that acidified urine specimens allowed the analytes to be stable for prolonged durations in comparison to those untreated. The study also reveals the performance of the method is unaffected by the absence of expensive deuterated reference standards under the experimental conditions employed which further simplifies the analytical procedures and provides a significant cost saving for running the assay.

The quantification of multi-class neurotransitters associated with the dopamine, tryptophan and GABA-glutamate pathways using a simple ‘dilute and shoot’ LC-MS/MS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cai HL, Zhu RH, Li HD, Zhang J, Li LF. MultiSimplex optimization of chromatographic separation and dansyl derivatization conditions in the ultra performance liquid chromatography-tandem mass spectrometry analysis of risperidone, 9-hydroxyrisperidone, monoamine and amino acid neurotransmitters in human urine. J Chromatogr B. 2011;879(21):1993–9. https://doi.org/10.1016/j.jchromb.2011.05.006.

    Article  CAS  Google Scholar 

  2. Greco S, Danysz W, Zivkovic A, Gross R, Stark H. Microdialysate analysis of monoamine neurotransmitters—a versatile and sensitive LC–MS/MS method. Anal Chim Acta. 2013;771:65–72. https://doi.org/10.1016/j.aca.2013.02.004.

    Article  CAS  Google Scholar 

  3. Bicker J, Fortuna A, Alves G, Falcao A. Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—a review. Anal Chim Acta. 2013;768:12–34. https://doi.org/10.1016/j.aca.2012.12.030.

    Article  CAS  Google Scholar 

  4. Sakaguchi Y, Yoshida H, Hayama T, Itoyama M, Todoroki K, Yamaguchi M, et al. Selective liquid-chromatographic determination of native fluorescent biogenic amines in human urine based on fluorous derivatization. J Chromatogr A. 2011;1218(33):5581–6. https://doi.org/10.1016/j.chroma.2011.05.076.

    Article  CAS  Google Scholar 

  5. Fuertig R, Ceci A, Camus SM, Bezard E, Luippold AH, Hengerer B. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain. Bioanalysis. 2016;8(18):1903–17. https://doi.org/10.4155/bio-2016-0111.

    Article  CAS  Google Scholar 

  6. Chuang SC, Fanidi A, Ueland PM, Relton C, Midttun O, Vollset SE, et al. Circulating biomarkers of tryptophan and the kynurenine pathway and lung cancer risk. Cancer Epidemiol Biomark Prev. 2014;23(3):461–8. https://doi.org/10.1158/1055-9965.epi-13-0770.

    Article  CAS  Google Scholar 

  7. Mooney JJ, Samson JA, Hennen J, Pappalardo K, McHale N, Alpert J, et al. Enhanced norepinephrine output during long-term desipramine treatment: a possible role for the extraneuronal monoamine transporter (SLC22A3). J Psychiatr Res. 2008;42(8):605–11. https://doi.org/10.1016/j.jpsychires.2007.07.009.

    Article  Google Scholar 

  8. Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011;7(Suppl 1):9–13. https://doi.org/10.2147/NDT.S19619.

    CAS  Google Scholar 

  9. Hughes JW, Watkins L, Blumenthal JA, Kuhn C, Sherwood A. Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. J Psychosom Res. 2004;57(4):353–8. https://doi.org/10.1016/j.jpsychores.2004.02.016.

    Article  Google Scholar 

  10. Albrecht J, Zielinska M. Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem Res. 2017;42(6):1724–34. https://doi.org/10.1007/s11064-016-2105-8.

    Article  CAS  Google Scholar 

  11. Sokolowska I, Ngounou Wetie AG, Wormwood K, Thome J, Darie CC, Woods AG. The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm. 2015;122(1):9–18. https://doi.org/10.1007/s00702-013-1134-6.

    Article  CAS  Google Scholar 

  12. Mamas M, Dunn WB, Neyses L, Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxico. 2011;85(1):5–17. https://doi.org/10.1007/s00204-010-0609-6.

    Article  CAS  Google Scholar 

  13. Marc DT, Ailts JW, Campeau DC, Bull MJ, Olson KL. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: validity and clinical applicability. Neurosci Biobehav Rev. 2011;35(3):635–44. https://doi.org/10.1016/j.neubiorev.2010.07.007.

    Article  CAS  Google Scholar 

  14. Rodan LH, Gibson KM, Pearl PL. Clinical use of CSF neurotransmitters. Pediatr Neurol. 2015;53(4):277–86. https://doi.org/10.1016/j.pediatrneurol.2015.04.016.

    Article  Google Scholar 

  15. Hinz M, Stein A, Trachte G, Uncini T. Neurotransmitter testing of the urine: a comprehensive analysis. Open Access J Urol. 2010;2:177–83. https://doi.org/10.2147/OAJU.S13370.

    Article  CAS  Google Scholar 

  16. Lepschy M, Rettenbacher S, Touma C, Palme RG. Excretion of catecholamines in rats, mice and chicken. J Comp Physiol B. 2008;178(5):629–36. https://doi.org/10.1007/s00360-008-0254-z.

    Article  CAS  Google Scholar 

  17. Panuwet P, Hunter RE, D’Souza PE, Chen X, Radford SA, Cohen JR, et al. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit Rev Anal Chem. 2016;46(2):93–105. https://doi.org/10.1080/10408347.2014.980775.

    Article  CAS  Google Scholar 

  18. Peaston RT, Weinkove C. Measurement of catecholamines and their metabolites. Ann Clin Biochem. 2004;41(Pt 1):17–38. https://doi.org/10.1258/000456304322664663.

    Article  CAS  Google Scholar 

  19. Eisenhofer G, Peitzsch M, McWhinney BC. Impact of LC-MS/MS on the laboratory diagnosis of catecholamine-producing tumors. Trends Anal Chem. 2016;84:106–16. https://doi.org/10.1016/j.trac.2016.01.027.

    Article  CAS  Google Scholar 

  20. Li XS, Li S, Wynveen P, Mork K, Kellermann G. Development and validation of a specific and sensitive LC-MS/MS method for quantification of urinary catecholamines and application in biological variation studies. Anal Bioanal Chem. 2014;406(28):7287–97. https://doi.org/10.1007/s00216-014-8120-1.

    Article  CAS  Google Scholar 

  21. Cakal C, Ferrance JP, Landers JP, Caglar P. Microchip extraction of catecholamines using a boronic acid functional affinity monolith. Anal Chim Acta. 2011;690(1):94–100. https://doi.org/10.1016/j.aca.2011.02.009.

    Article  CAS  Google Scholar 

  22. Jiang L, Chen Y, Chen Y, Ma M, Tan Y, Tang H, et al. Determination of monoamine neurotransmitters in human urine by carrier-mediated liquid-phase microextraction based on solidification of stripping phase. Talanta. 2015;144:356–62. https://doi.org/10.1016/j.talanta.2015.06.068.

    Article  CAS  Google Scholar 

  23. Gu Q, Shi X, Yin P, Gao P, Lu X, Xu G. Analysis of catecholamines and their metabolites in adrenal gland by liquid chromatography tandem mass spectrometry. Anal Chim Acta. 2008;609(2):192–200. https://doi.org/10.1016/j.aca.2008.01.017.

    Article  CAS  Google Scholar 

  24. Willemsen JJ, Ross HA, Lenders JWM, Sweep CGJ. Stability of urinary fractionated metanephrines and catecholamines during collection, shipment, and storage of samples. Clin Chem. 2007;53:268–72.

    Article  CAS  Google Scholar 

  25. Roberts NB, Higgins G, Sargazi M. A study on the stability of urinary free catecholamines and free methyl-derivatives at different pH, temperature and time of storage. Clin Chem Lab Med. 2010;48(1):81–7. https://doi.org/10.1515/cclm.2010.017.

    Article  CAS  Google Scholar 

  26. Hubbard KE, Wells A, Owens TS, Tagen M, Fraga CH, Stewart CF. Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed Chromatogr. 2010;24(6):626–31. https://doi.org/10.1002/bmc.1338.

    CAS  Google Scholar 

  27. Toxicology SWGfF. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol. 2013;37(7):452–74. https://doi.org/10.1093/jat/bkt054.

    Article  Google Scholar 

  28. Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr A. 2014;1362:145–56. https://doi.org/10.1016/j.chroma.2014.08.037.

    Article  Google Scholar 

  29. van de Merbel NC, Hendriks G, Imbos R, Tuunainen J, Rouru J, Nikkanen H. Quantitative determination of free and total dopamine in human plasma by LC–MS/MS: the importance of sample preparation. Bioanalysis. 2011;3(17):1949–61. https://doi.org/10.4155/bio.11.170.

    Article  Google Scholar 

  30. Lu H, Yu J, Wang J, Wu L, Xiao H, Gao R. Simultaneous quantification of neuroactive dopamine serotonin and kynurenine pathway metabolites in gender-specific youth urine by ultra performance liquid chromatography tandem high resolution mass spectrometry. J Pharm Biomed Anal. 2016;122:42–51. https://doi.org/10.1016/j.jpba.2016.01.031.

    Article  CAS  Google Scholar 

  31. Chan ECY, Ho PCL. Chromatographic measurements of catecholamines and metanephrines. In: Bertholf R, Winecker R, editors. Chromatographic methods in clinical chemistry and toxicology. Hoboken, NJ: John Wiley & Sons, Ltd; 2007. p. 101–26.

  32. Li XS, Li S, Kellermann G. Simultaneous extraction and determination of monoamine neurotransmitters in human urine for clinical routine testing based on a dual functional solid phase extraction assisted by phenylboronic acid coupled with liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2017;409(11):2859–71. https://doi.org/10.1007/s00216-017-0231-z.

    Article  CAS  Google Scholar 

  33. Kaspar H, Dettmer K, Chan Q, Daniels S, Nimkar S, Daviglus ML, et al. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer. J Chromatogr B. 2009;877(20–21):1838–46. https://doi.org/10.1016/j.jchromb.2009.05.019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlin Fu.

Ethics declarations

Ethics approval for collecting human urine samples was obtained from the UTS Human Research Ethics Committee (Ethics Approval No. UTS HREC 2010268A). Informed consent was obtained from all donors who provided urine samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Kuzhiumparambil, U., Bandodkar, S. et al. Development and validation of a simple, rapid and sensitive LC-MS/MS method for the measurement of urinary neurotransmitters and their metabolites. Anal Bioanal Chem 409, 7191–7199 (2017). https://doi.org/10.1007/s00216-017-0681-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0681-3

Keywords

Navigation