Skip to main content
Log in

Qualitative characterization of SRM 1597a coal tar for polycyclic aromatic hydrocarbons and methyl-substituted derivatives via normal-phase liquid chromatography and gas chromatography/mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A normal-phase liquid chromatography (NPLC) fractionation procedure was developed for the characterization of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from a coal tar sample (Standard Reference Material (SRM) 1597a). Using a semi-preparative aminopropyl (NH2) LC column, the coal tar sample was separated using NPLC based on the number of aromatic carbons; a total of 14 NPLC fractions were collected. SRM 1597a was analyzed before and after NPLC fractionation by using gas chromatography/mass spectrometry (GC/MS) with a 50% phenyl stationary phase. The NPLC-GC/MS method presented in this study allowed for the identification of 72 PAHs and 56 MePAHs. These identifications were based on the NPLC retention times for authentic reference standards, GC retention times for authentic reference standards, and the predominant molecular ion peak in the mass spectrum. Most noteworthy was the determination of dibenzo[a,l]pyrene, which could not be measured directly by GC/MS because of low concentration and co-elution with dibenzo[j,l]fluoranthene. The NPLC-GC/MS procedure also allowed for the tentative identification of 74 PAHs and 117 MePAHs based on the molecular ion peak only. This study represents the most comprehensive qualitative characterization of SRM 1597a to date.

NPLC-GC/MS analysis for the six-ring MM 302 Da PAH isomers in SRM 1597a

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Canha N, Lopes I, Vicente ED, Vicente AM, Bandowe BAM, Almeida SM, et al. Mutagenicity assessment of aerosols in emissions from domestic combustion processes. Environ Sci Pollut Res. 2016;23(11):10799–807. doi:10.1007/s11356-016-6292-2.

    Article  CAS  Google Scholar 

  2. Olson GM, Meyer BM, Portier RJ. Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting gulf menhaden (Brevoortia patronus) harvested from waters impacted by the bp deepwater horizon spill. Chemosphere. 2016;145:322–8. doi:10.1016/j.chemosphere.2015.11.087.

    Article  CAS  Google Scholar 

  3. de Souza MR, da Silva FR, de Souza CT, Niekraszewicz L, Dias JF, Premoli S. Evaluation of the genotoxic potential of soil contaminated with mineral coal tailings on snail Helix aspersa. Chemosphere. 2015;139:512–7. doi:10.1016/j.chemosphere.2015.07.071.

    Article  Google Scholar 

  4. Ona-Ruales JO, Ruiz-Morales Y, Wise SA. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. J Chromatogr A. 2016;1442:83–93. doi:10.1016/j.chroma.2016.02.082.

    Article  CAS  Google Scholar 

  5. Ona-Ruales JO, Sharma AK, Wise SA. Identification and quantification of six-ring C26H16 cata-condensed polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. Anal Bioanal Chem. 2015;407(30):9165–76. doi:10.1007/s00216-015-9084-5.

    Article  CAS  Google Scholar 

  6. Schubert P, Schantz MM, Sander LC, Wise SA. Determination of polycyclic aromatic hydrocarbons with molecular weight 300 and 302 in environmental-matrix standard reference materials by gas chromatography/mass spectrometry. Anal Chem. 2003;75(2):234–46. doi:10.1021/ac0259111.

    Article  CAS  Google Scholar 

  7. Wise SA, Benner BA, Byrd GD, Chesler SN, Rebbert RE, Schantz MM. Determination of polycyclic aromatic-hydrocarbons in a coal-tar standard reference material. Anal Chem. 1988;60(9):887–94. doi:10.1021/ac00160a012.

    Article  CAS  Google Scholar 

  8. Wise SA, Poster DL, Leigh SD, Rimmer CA, Mossner S, Schubert P, et al. Polycyclic aromatic hydrocarbons (PAHs) in a coal tar standard reference material-SRM 1597a updated. Anal Bioanal Chem. 2010;398(2):717–28. doi:10.1007/s00216-010-4008-x.

    Article  CAS  Google Scholar 

  9. Wilson WB, Alfarhani B, Moore AFT, Bisson C, Wise SA, Campiglia AD. Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved shpol'skii spectroscopy. Talanta. 2016;148:444–53. doi:10.1016/j.talanta.2015.11.018.

    Article  CAS  Google Scholar 

  10. Moore AFT, Goicoechea HC, Barbosa F, Campiglia AD. Parallel factor analysis of 4.2 K excitation–emission matrices for the direct determination of dibenzopyrene isomers in coal-tar samples with a cryogenic fiber-optic probe coupled to a commercial spectrofluorimeter. Anal Chem. 2015;87(10):5232–9. doi:10.1021/acs.analchem.5b00147.

    Article  CAS  Google Scholar 

  11. Schantz MM, McGaw E, Wise SA. Pressurized liquid extraction of diesel and air particulate standard reference materials: effect of extraction temperature and pressure. Anal Chem. 2012;84(19):8222–31. doi:10.1021/ac301443v.

    Article  CAS  Google Scholar 

  12. Zhao Y, Hong B, Fan YQ, Wen M, Han X. Accurate analysis of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs homologs in crude oil for improving the gas chromatography/mass spectrometry performance. Ecotoxicol Environ Saf. 2014;100:242–50. doi:10.1016/j.ecoenv.2013.10.018.

    Article  CAS  Google Scholar 

  13. Schantz MM, Cleveland D, Heckert NA, Kucklick JR, Leigh SD, Long SE, et al. Development of two fine particulate matter standard reference materials (< 4 mu m and < 10 mu m) for the determination of organic and inorganic constituents. Anal Bioanal Chem. 2016;408(16):4257–66. doi:10.1007/s00216-016-9519-7.

    Article  CAS  Google Scholar 

  14. Wise SA, Poster DL, Kucklick JR, Keller JM, VanderPol SS, Sander LC, et al. Standard reference materials (SRMs) for determination of organic contaminants in environmental samples. Anal Bioanal Chem. 2006;386(4):1153–90. doi:10.1007/s00216-006-0719-4.

    Article  CAS  Google Scholar 

  15. Zhang XT, Hou HW, Chen H, Liu Y, Wang A, Hu QY. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry. J Sep Sci. 2015;38(22):3862–9. doi:10.1002/jssc.201500623.

    Article  CAS  Google Scholar 

  16. Wise SA, Benner BA, Liu HC, Byrd GD, Colmsjo A. Separation and identification of polycyclic aromatic hydrocarbon isomers of molecular-weight 302 in complex-mixtures. Anal Chem. 1988;60(7):630–7. doi:10.1021/ac00158a006.

    Article  CAS  Google Scholar 

  17. Regueiro J, Matamoros V, Thibaut R, Porte C, Bayona JM. Use of effect-directed analysis for the identification of organic toxicants in surface flow constructed wetland sediments. Chemosphere. 2013;91(8):1165–75. doi:10.1016/j.chemosphere.2013.01.023.

    Article  CAS  Google Scholar 

  18. Olsson P, Sadiktsis I, Holmback J, Westerholm R. Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase high performance liquid chromatography - a prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates. J Chromatogr A. 2014;1360:39–46. doi:10.1016/j.chroma.2014.07.064.

    Article  CAS  Google Scholar 

  19. Fang ML, Getzinger GJ, Cooper EM, Clark BW, Garner LVT, Di Giulio RT. Effect-directed analysis of elizabeth river porewater: developmental toxicity in zebrafish (Danio rerio). Environ Toxicol Chem. 2014;33(12):2767–74. doi:10.1002/etc.2738.

    Article  CAS  Google Scholar 

  20. Marvin CH, McCarry BE, Lundrigan JA, Roberts K, Bryant DW. Bioassay-directed fractionation of pah of molecular mass 302 in coal tar-contaminated sediment. Sci Total Environ. 1999;231(2–3):135–44. doi:10.1016/s0048-9697(99)00096-0.

    Article  CAS  Google Scholar 

  21. Gilgenast E, Boczkaj G, Przyjazny A, Kaminski M. Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen. Anal Bioanal Chem. 2011;401(3):1059–69. doi:10.1007/s00216-011-5134-9.

    Article  CAS  Google Scholar 

  22. Sander LC, Pursch M, Wise SA. Shape selectivity for constrained solutes in reversed-phase liquid chromatography. Anal Chem. 1999;71(21):4821–30. doi:10.1021/ac9908187.

    Article  CAS  Google Scholar 

  23. Sander LC, Wise SA. Influence of stationary-phase chemistry on shape-recognition in liquid-chromatography. Anal Chem. 1995;67(18):3284–92. doi:10.1021/ac00114a027.

    Article  CAS  Google Scholar 

  24. Sander LC, Wise SA. Shape selectivity in reversed-phase liquid-chromatography for the separation of planar and nonplanar solutes. J Chromatogr A. 1993;656(1–2):335–51. doi:10.1016/0021-9673(93)80808-l.

    Article  CAS  Google Scholar 

  25. Wise SA, Sander LC, Lapouyade R, Garrigues P. Anomalous behavior of selected methyl-substituted polycyclic aromatic-hydrocarbons in reversed-phase liquid-chromatography. J Chromatogr. 1990;514(2):111–22. doi:10.1016/s0021-9673(01)89383-3.

    Article  CAS  Google Scholar 

  26. Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase. Anal Bioanal Chem. 2017; in preparation.

  27. Mössner SG, Wise SA. Determination of polycyclic aromatic sulfur heterocycles in fossil fuel-related samples. Anal Chem. 1999;71(1):58–69. doi:10.1021/ac980664f.

    Article  Google Scholar 

  28. Sander LC, Wise SA. Polycyclic Aromatic Hydrocarbon Structure Index, NIST Special Publication 922 (http://www.nist.gov/mml/csd/special-publication-922-polycyclic-aromatic-hydrocarbon-structure-index), U.S. Government Printing Office, Washington, DC, 1997. Access 17.01.03.

  29. Poster DL, Benner BA, Schantz MM, Sander LC, Wise SA, Vangel MG. Determination of methyl-substituted polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials. Polycycl Aromat Compd. 2003;23(2):113–39. doi:10.1080/10406630308059.

    Article  CAS  Google Scholar 

  30. Nalin F, Sander LC, Wilson WB, Wise SA. Gas chromatographic retention behavior of polycyclci aromatic hydrocarbons and alkyl-substituted pahs on two stationary phases of different selectivity. Anal Bioanal Chem 2017, in preparation.

  31. Dias JR. Handbook of polycyclic hydrocarbons. New York: Elseveir; 1987.

    Google Scholar 

  32. Wise SA, Deissler A, Sander LC. Liquid chromatographic determination of polycyclic aromatic hydrocarbon isomers of molecular weight 278 and 302 in environmental standard reference materials. Polycycl Aromat Compd. 1993;3(3):169–84. doi:10.1080/10406639308047869.

    Article  CAS  Google Scholar 

  33. Cavalieri EL, Higginbotham S, RamaKrishna NVS, Devanesan PD, Todorovic R, Rogan EG. Comparative dose—response tumorigenicity studies of dibenzo[a,l]pyrene versus 7, 12-dimethylbenz[a]anthracene, benzo[a and two dibenzo[a,l]pyrene dihydrodiols in mouse skin and rat mammary gland. Carcinogenesis. 1991;12(10):1939–44. doi:10.1093/carcin/12.10.1939.

  34. Devanesan P, Ariese F, Jankowiak R, Small GJ, Rogan EG, Cavalieri EL. Preparation, isolation, and characterization of dibenzo[a,l]pyrene diol epoxide−deoxyribonucleoside monophosphate adducts by hplc and fluorescence line-narrowing spectroscopy. Chem Res in Toxicol. 1999;12(9):789–95. doi:10.1021/tx980202x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. Hugh and A. D. Campiglia acknowledge financial support from The Gulf of Mexico Research Initiative (Grant 231617-00). The views expressed are those of the authors and do not necessarily reflect the view of this organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter B. Wilson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Disclaimer

Certain commercial equipment or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Electronic supplementary material

ESM 1

(PDF 1313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, W.B., Hayes, H.V., Sander, L.C. et al. Qualitative characterization of SRM 1597a coal tar for polycyclic aromatic hydrocarbons and methyl-substituted derivatives via normal-phase liquid chromatography and gas chromatography/mass spectrometry. Anal Bioanal Chem 409, 5171–5183 (2017). https://doi.org/10.1007/s00216-017-0464-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0464-x

Keywords

Navigation