Skip to main content
Log in

Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The study of edaphic bacteria is of great interest, particularly for evaluating soil remediation and recultivation methods. Therefore, a fast and simple strategy to isolate various bacteria from complex soil samples using poly(ethyleneimine) (PEI)-modified polyethylene particles is introduced. The research focuses on the binding behavior under different conditions, such as the composition, pH value, and ionic strength, of the binding buffer, and is supported by the characterization of the surface properties of particles and bacteria. The results demonstrate that electrostatic forces and hydrophobicity are responsible for the adhesion of target bacteria to the particles. Distinct advantages of the particle-based isolation strategy include simple handling, enrichment efficiency, and the preservation of viable bacteria. The presented isolation method allows a subsequent identification of the bacteria using Raman microspectroscopy in combination with chemometrical methods. This is demonstrated with a dataset of five different bacteria (Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, Streptomyces tendae, and Streptomyces acidiscabies) which were isolated from spiked soil samples. In total 92% of the Raman spectra could be identified correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cornu J-Y, Huguenot D, Jézéquel K, Lollier M, Lebeau T. Bioremediation of copper-contaminated soils by bacteria. World J Microbiol Biotechnol. 2017;33(2):26.

    Article  Google Scholar 

  2. Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere. 2017;168:944–68.

    Article  CAS  Google Scholar 

  3. Ribeiro J, Taffarel SR, Sampaio CH, Flores D, Silva LFO. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int J Coal Geol. 2013;109–110:15–23.

    Article  Google Scholar 

  4. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57(1):369–94.

    Article  Google Scholar 

  5. Venkateswaran K, Murakoshi A, Satake M. Comparison of commercially available kits with standard methods for the detection of coliforms and Escherichia coli in foods. Appl Environ Microbiol. 1996;62(7):2236–43.

    CAS  Google Scholar 

  6. Dauphin L, Stephens K, Eufinger S, Bowen M. Comparison of five commercial DNA extraction kits for the recovery of Yersinia pestis DNA from bacterial suspensions and spiked environmental samples. J Appl Microbiol. 2010;108(1):163–72.

    Article  CAS  Google Scholar 

  7. Whitehouse CA, Hottel HE. Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol Cell Probes. 2007;21(2):92–6.

    Article  CAS  Google Scholar 

  8. Coutinho H, De Oliveira V, Manfio GP, Rosado AS. Evaluating the microbial diversity of soil samples: methodological innovations. An Acad Bras Cienc. 1998;71(3 Pt 2):491–503.

    Google Scholar 

  9. Lindahl V, Bakken LR. Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol. 1995;16(2):135–42.

    Article  CAS  Google Scholar 

  10. Besseling NAM, Lyklema J. Molecular thermodynamics of hydrophobic hydration. J Phys Chem B. 1997;101(38):7604–11.

    Article  CAS  Google Scholar 

  11. Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century. J Raman Spectrosc. 2006;37(1–3):20–8.

    Article  CAS  Google Scholar 

  12. Schuster KC, Urlaub E, Gapes J. Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods. 2000;42(1):29–38.

    Article  CAS  Google Scholar 

  13. Rösch P, Harz M, Peschke KD, Ronneberger O, Burkhardt H, Popp J. Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers. 2006;82(4):312–6.

    Article  Google Scholar 

  14. Espagnon I, Ostrovskii D, Mathey R, Dupoy M, Joly PL, Novelli-Rousseau A, Pinston F, Gal O, Mallard F, Leroux DF. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy. J Biomed Opt. 2014;19(2):027004.

    Article  Google Scholar 

  15. Stöckel S, Meisel S, Elschner M, Rösch P, Popp J. Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches. Anal Chem. 2012;84(22):9873–80.

    Article  Google Scholar 

  16. Kloß S, Lorenz B, Dees S, Labugger I, Rösch P, Popp J. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Anal Bioanal Chem. 2015;407(27):8333–41.

    Article  Google Scholar 

  17. Holländer A, Klein W, Keusgen M. Polymeroberflachen fur biomedizinische Anwendungen. BIOspektrum. 2003;9(1):39–41.

    Google Scholar 

  18. Holländer A, Thome J, Keusgen M, Degener I, Klein W. Polymer surface chemistry for biologically active materials. Appl Surf Sci. 2004;235(1):145–50.

    Article  Google Scholar 

  19. Holländer A. Surface oxidation inside of macroscopic porous polymeric materials. Surf Coat Technol. 2005;200(1–4):561–4.

    Article  Google Scholar 

  20. Siñeriz ML, Kothe E, Abate CM. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol. 2009;49(S1):S55–62.

    Article  Google Scholar 

  21. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E. Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol. 2000;40(5–6):295–301.

    Article  CAS  Google Scholar 

  22. Christensen T, Trabbic-Carlson K, Liu W, Chilkoti A. Purification of recombinant proteins from Escherichia coli at low expression levels by inverse transition cycling. Anal Biochem. 2007;360(1):166–8.

    Article  CAS  Google Scholar 

  23. Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E, Setlow P. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl Environ Microbiol. 2002;68(6):3172–5.

    Article  CAS  Google Scholar 

  24. Lyklema J. Electrokinetics after Smoluchowski. Colloids Surf A Physicochem Eng Asp. 2003;222(1–3):5–14.

    Article  CAS  Google Scholar 

  25. Schwarz M, Pahlow S, Bocklitz T, Steinbrucker C, Cialla D, Weber K, Popp J. Convenient detection of E. coli in Ringer’s solution. Analyst. 2013;138(20):5866–70.

    Article  CAS  Google Scholar 

  26. Meisel S, Stöckel S, Elschner M, Rösch P, Popp J. Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Analyst. 2011;136(23):4997–5005.

    Article  CAS  Google Scholar 

  27. Stöckel S, Meisel S, Elschner M, Rösch P, Popp J. Raman spectroscopic detection of anthrax endospores in powder samples. Angew Chem Int Ed. 2012;51(22):5339–42.

    Article  Google Scholar 

  28. Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3–900051–07-0.

  29. Morhác M (2008) Peaks: Peaks, R package version 0.2.

  30. Morháč M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl Instrum Methods Phys Res, Sect A. 2009;600(2):478–87.

    Article  Google Scholar 

  31. Zhang D, Jallad KN, Ben-Amotz D. Stripping of cosmic spike spectral artifacts using a new upper-bound spectrum algorithm. Appl Spectrosc. 2001;55(11):1523–31.

    Article  CAS  Google Scholar 

  32. Carrabba MM (2006) Wavenumber standards for Raman spectrometry. In: Chalmers JM (ed) Handbook of vibrational spectroscopy, vol 1. Wiley, Chichester [u.a.].

  33. Schumacher W, Stöckel S, Rösch P, Popp J. Improving chemometric results by optimizing the dimension reduction for Raman spectral data sets. J Raman Spectrosc. 2014;45(10):930–40.

    Article  CAS  Google Scholar 

  34. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2006) Misc functions of the Department of Statistics. R package version 1.

  35. Jähn A, Schröder M, Füting M, Schenzel K, Diepenbrock W. Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta, Part A. 2002;58(10):2271–9.

    Article  Google Scholar 

  36. Sun C, Tang T, Uludağ H, Cuervo JE. Molecular dynamics simulations of DNA/PEI complexes: effect of PEI branching and protonation state. Biophys J. 2011;100(11):2754–63.

    Article  CAS  Google Scholar 

  37. Wilson WW, Wade MM, Holman SC, Champlin FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods. 2001;43(3):153–64.

    Article  CAS  Google Scholar 

  38. Mozes N, Rouxhet P. Methods for measuring hydrophobicity of microorganisms. J Microbiol Methods. 1987;6(2):99–112.

    Article  Google Scholar 

  39. Beveridge TJ, Graham LL. Surface layers of bacteria. Microbiol Rev. 1991;55(4):684–705.

    CAS  Google Scholar 

  40. Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980;141(2):876–87.

    CAS  Google Scholar 

  41. Sprott GD, Koval SF (2007) Cell fractionation. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, Third Edition. ASMscience.

  42. Jucker BA, Zehnder AJ, Harms H. Quantification of polymer interactions in bacterial adhesion. Environ Sci Technol. 1998;32(19):2909–15.

    Article  CAS  Google Scholar 

  43. Yee N, Fein JB, Daughney CJ. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochim Cosmochim Acta. 2000;64(4):609–17.

    Article  CAS  Google Scholar 

  44. Zhao W, Walker SL, Huang Q, Cai P. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. Water Res. 2014;53:35–46.

    Article  CAS  Google Scholar 

  45. Ritvo G, Dassa O, Kochba M. Salinity and pH effect on the colloidal properties of suspended particles in super intensive aquaculture systems. Aquaculture. 2003;218(1):379–86.

    Article  Google Scholar 

  46. Mills AL, Herman JS, Hornberger GM, DeJesús TH. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand. Appl Environ Microbiol. 1994;60(9):3300–6.

    CAS  Google Scholar 

  47. Vigeant MA-S, Ford RM, Wagner M, Tamm LK. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl Environ Microbiol. 2002;68(6):2794–801.

    Article  CAS  Google Scholar 

  48. Chen G, Walker SL. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media. Environ Sci Technol. 2012;46(16):8782–90.

    Article  CAS  Google Scholar 

  49. Abu-Lail NI, Camesano TA. Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442. Biomacromolecules. 2003;4(4):1000–12.

    Article  CAS  Google Scholar 

  50. Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf, B. 1999;14(1):105–19.

    Article  CAS  Google Scholar 

  51. Rijnaarts HH, Norde W, Lyklema J, Zehnder AJ. DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids Surf, B. 1999;14(1):179–95.

    Article  CAS  Google Scholar 

  52. Bitton G, Marshall KC. Adsorption of microorganisms to surfaces. Hoboken: Wiley; 1980.

    Google Scholar 

  53. Meisel S, Stöckel S, Elschner M, Melzer F, Rösch P, Popp J. Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. Appl Environ Microbiol. 2012;78(16):5575–83.

    Article  CAS  Google Scholar 

  54. Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J. Sample size planning for classification models. Anal Chim Acta. 2013;760:25–33.

    Article  CAS  Google Scholar 

  55. Meisel S, Stöckel S, Rösch P, Popp J. Identification of meat-associated pathogens via Raman microspectroscopy. Food Micorobiol. 2014;38:36–43.

    Article  CAS  Google Scholar 

  56. Walter A, Schumacher W, Bocklitz T, Reinicke M, Rösch P, Kothe E, Popp J. From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy. Appl Spectrosc. 2011;65(10):1116–25.

    Article  CAS  Google Scholar 

  57. Pahlow S, Kloß S, Blättel V, Kirsch K, Hübner U, Cialla D, Rösch P, Weber K, Popp J. Isolation and enrichment of pathogens with a surface-modified aluminium chip for Raman spectroscopic applications. ChemPhysChem. 2013;14(15):3600–5.

    Article  CAS  Google Scholar 

  58. Harz M, Rösch P, Popp J. Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry Part A. 2009;75(2):104–13.

    Article  CAS  Google Scholar 

  59. Harz M, Rösch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130(11):1543–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jan und Andrea Dellith (IPHT Jena) for performing the SEM measurements, Prof. Erika Kothe and Martin Reinicke (Friedrich Schiller University, Institute of Microbiology) for providing Streptomyces spp. cultures, and Tanja Bus (Friedrich Schiller University, Institute for Organic and Macromolecular Chemistry) for assistance with the Zeta potential measurements. Funding of the research projects MikroPlex (PE113-1) within the federal program “ProExzellenz” and BioInter (13022-715) by the Development Bank of Thuringia and the European Union (EFRE) is gratefully acknowledged. Furthermore, we thank the Federal Ministry of Education and Research (BMBF), Germany, for their financial support of InfectoGnostics (13GW0096F) and the InnoProfile-Transfer research group JBCI2.0 (03IPT513Y, Unternehmen Region).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Weber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, M., Kloß, S., Stöckel, S. et al. Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy. Anal Bioanal Chem 409, 3779–3788 (2017). https://doi.org/10.1007/s00216-017-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0320-z

Keywords

Navigation