Skip to main content
Log in

A liquid chromatography-tandem mass spectrometry analysis of nine cytochrome P450 probe drugs and their corresponding metabolites in human serum and urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cocktail phenotyping using specific probe drugs for cytochrome P450 (CYP) enzymes provides information on the real-time activity of multiple CYPs. We investigated different sample preparation techniques and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with simple protein precipitation for the analysis of nine CYP probe drugs and their metabolites in human serum and urine. Specific CYP probe drugs (melatonin, CYP1A2; nicotine, CYP2A6; bupropion, CYP2B6; repaglinide, CYP2C8; losartan, CYP2C9; omeprazole, CYP2C19 and CYP3A4; dextromethorphan, CYP2D6; chlorzoxazone, CYP2E; midazolam, CYP3A4) and their main metabolites, with the exception of 3′-hydroxyrepaglinide, were quantified in human serum and urine using the developed LC-MS/MS method. The analytical method was fully validated showing high selectivity, linearity, acceptable accuracy (85–115 %) and precision (2–19 %) and applied to a pharmacokinetic study in four healthy volunteers after oral administration of drugs given as a cocktail. All probe drugs and their metabolites (totally 19 analytes) were detected and quantified from human serum and urine over the time range of 1 to 6 h after oral administration. Therefore, the proposed method is applicable for drug interaction and CYP phenotyping studies utilizing a cocktail approach.

Workflow overwiew of cocktail CYP-phenotyping study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol. 2008;21:70–83.

    Article  CAS  Google Scholar 

  2. Gonzalez FJ, Tukey RH. Drug metabolism. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw Hill; 2006. p. 71–91.

    Google Scholar 

  3. Breimer DD. Interindividual variations in drug disposition. clinical implications and methods of investigation. Clin Pharmacokinet. 1983;8:371–7.

    Article  CAS  Google Scholar 

  4. Bosilkovska M, Samer CF, Déglon J, Rebsamen M, Staub C, Dayer P, et al. Geneva cocktail for cytochrome P450 and P-glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther. 2014;96:349–59.

    Article  CAS  Google Scholar 

  5. de Andrés F, Terán S, Bovera M, Fariñas H, Terán E, LLerena A. Multiplex phenotyping for systems medicine: a one-point optimized practical sampling strategy for simultaneous estimation of CYP1A2, CYP2C9, CYP2C19, and CYP2D6 activities using a cocktail approach. OMICS. 2016;20:88–96.

    Article  Google Scholar 

  6. Donzelli M, Derungs A, Serratore MG, Noppen C, Nezic L, Krähenbühl S, et al. The basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin Pharmacokinet. 2014;53:271–82.

    Article  CAS  Google Scholar 

  7. Chainuvati S, Nafziger AN, Leeder JS, Gaedigk A, Kearns GL, Sellers E, et al. Combined phenotypic assessment of cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5 + 1 cocktail”. Clin Pharmacol Ther. 2003;74:437–47.

    Article  CAS  Google Scholar 

  8. Christensen M, Andersson K, Dalén P, Mirghani RA, Muirhead GJ, Nordmark A, et al. The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes. Clin Pharmacol Ther. 2003;73:517–28.

    Article  CAS  Google Scholar 

  9. Sharma A, Pilote S, Bélanger PM, Arsenault M, Hamelin BA. A convenient five-drug cocktail for the assessment of major drug metabolizing enzymes: a pilot study. Br J Clin Pharmacol. 2004;58:288–97.

    Article  CAS  Google Scholar 

  10. Streetman DS, Bleakley JF, Kim JS, Nafziger AN, Leeder JS, Gaedigk A, et al. Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the “Cooperstown cocktail”. Clin Pharmacol Ther. 2000;68:375–83.

    Article  CAS  Google Scholar 

  11. Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther. 2007;81:270–83.

    Article  CAS  Google Scholar 

  12. Turpault S, Brian W, Horn RV, Santoni A, Poitiers F, Donazzolo Y, et al. Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A. Br J Clin Pharmacol. 2009;68:928–35.

    Article  CAS  Google Scholar 

  13. de Andrés F, Sosa-Macías M, Llerena A. A rapid and simple LC-MS/MS method for the simultaneous evaluation of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 hydroxylation capacity. Bioanalysis. 2014;6:683–96.

    Article  Google Scholar 

  14. Bosilkovska M, Déglon J, Samer C, Walder B, Desmeules J, Staub C, et al. Simultaneous LC-MS/MS quantification of P-glycoprotein and cytochrome P450 probe substrates and their metabolites in DBS and plasma. Bioanalysis. 2014;6:151–64.

    Article  CAS  Google Scholar 

  15. Tanaka S, Uchida S, Inui N, Takeuchi K, Watanabe H, Namiki N. Simultaneous LC-MS/MS analysis of the plasma concentrations of a cocktail of 5 cytochrome P450 substrate drugs and their metabolites. Biol Pharm Bull. 2014;37:18–25.

    Article  CAS  Google Scholar 

  16. Petsalo A, Turpeinen M, Pelkonen O, Tolonen A. Analysis of nine drugs and their cytochrome P450-specific probe metabolites from urine by liquid chromatography-tandem mass spectrometry utilizing sub 2 microm particle size column. J Chromatogr A. 2008;1215:107–15.

    Article  CAS  Google Scholar 

  17. European Medicines Agency. Guideline on the validation of bioanalytical methods. London: Committee for Proprietary Medicinal Products for Human use (CHMP); 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf.

    Google Scholar 

  18. Krösser S, Neugebauer R, Dolgos H, Fluck M, Rost KL, Kovar A. Investigation of sarizotan’s impact on the pharmacokinetics of probe drugs for major cytochrome P450 isoenzymes: a combined cocktail trial. Eur J Clin Pharmacol. 2006;62:277–84.

    Article  Google Scholar 

  19. Tomalik-Scharte D, Jetter A, Kinzig-Schippers M, Skott A, Sörgel F, Klaassen T, et al. Effect of propiverine on cytochrome P450 enzymes: a cocktail interaction study in healthy volunteers. Drug Metab Dispos. 2005;33:1859–66.

    CAS  Google Scholar 

  20. Säll C, Houston JB, Galetin A. A comprehensive assessment of repaglinide metabolic pathways: impact of choice of in vitro system and relative enzyme contribution to in vitro clearance. Drug Metab Dispos. 2012;40:1279–89.

    Article  Google Scholar 

  21. Yasar Ü, Eliasson E, Forslund-Bergengren C, Tybring G, Gadd M, Sjöqvist F, et al. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol. 2001;57:729–35.

    Article  CAS  Google Scholar 

  22. Yasar Ü, Tybring G, Hidestrand M, Oscarson M, Ingelman-Sundberg M, Dahl ML, et al. The role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos. 2001;29:1051–6.

    CAS  Google Scholar 

  23. European Medicines Agency. Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf.

  24. Blakey GE, Lockton JA, Perrett J, Norwood P, Russell M, Aherne Z, et al. Pharmacokinetic and pharmacodynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1. Br J Clin Pharmacol. 2004;57:162–9.

    Article  CAS  Google Scholar 

  25. Ryu JY, Song IS, Sunwoo YE, Shon JH, Liu KH, Cha IJ, et al. Development of the “Inje cocktail” for high-throughput evaluation of five human cytochrome P450 isoforms in vivo. Clin Pharmacol Ther. 2007;82:531–40.

    Article  CAS  Google Scholar 

  26. Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev. 2010;42:268–354.

    Article  CAS  Google Scholar 

  27. Dempsey D, Tutka P, Jacob 3rd P, Allen F, Schoedel K, Tyndale RF, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;76:64–72.

    Article  CAS  Google Scholar 

  28. Raunio H, Rahnasto-Rilla M. CYP2A6: genetics, structure, regulation, and function. Drug Metabol Drug Interact. 2012;27:73–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge Ms Pirjo Hänninen (School of Pharmacy, University of Eastern Finland) for the excellent technical assistance, Dr. Seppo Auriola for helpful discussions and advice regarding the method validation procedure and M.Sc.Taisiya Bezhaeva for her assistance in preparation of the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Puris.

Ethics declarations

The pharmacokinetic study was approved by the Research Ethics Committee of North Savo District Hospital No: 27/2010 and was conducted in accordance with the Declaration of Helsinki. All healthy volunteers gave the informed consent before any study procedures were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puris, E., Pasanen, M., Gynther, M. et al. A liquid chromatography-tandem mass spectrometry analysis of nine cytochrome P450 probe drugs and their corresponding metabolites in human serum and urine. Anal Bioanal Chem 409, 251–268 (2017). https://doi.org/10.1007/s00216-016-9994-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9994-x

Keywords

Navigation