Skip to main content
Log in

Multiphoton electron extraction spectroscopy and its comparison with other spectroscopies for direct detection of solids under ambient conditions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multiphoton electron extraction spectroscopy (MEES) is an analytical method for direct analysis of solids under ambient conditions in which the samples are irradiated by short UV laser pulses and the photocharges emitted are recorded as a function of the laser wavelength. The method is very sensitive, and many peaks are observed at wavelengths that are in resonance with the surface molecules. The analytical capabilities of MEES have recently been demonstrated, and here we perform a systematic comparison with some traditional spectroscopies that are commonly applied to material analysis. These include absorption, reflection, excitation and emission fluorescence, Raman, Fourier transform IR, and Fourier transform near-IR spectroscopies. The comparison is conducted for powders and for thin films of compounds that are active in all spectroscopies tested. Besides the obvious spectral parameters (signal-to-noise ratio, peak density, and resulting limits of detection), we introduce two additional variables—the spectral quality and the spectral quality density—that represent our intuitive perception of the analytical value of a spectrum. It is shown that by most parameters MEES is a superior analytical tool to the other methods tested for both sample morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Srinivas D, Upadhyaya HP. Dynamics of Cl (2Pj) formation in the photodissociation of halogenated thiadiazole at 235nm: a resonance enhanced multiphoton ionization-time of flight (REMPI-TOF) study. J Photochem Photobiol A. 2016;322:41–52.

    Article  Google Scholar 

  2. Zhang G, Tao Q, Ren Z, Zheng H. Influence of Doppler effect on the absorption in the process of resonance multiphoton ionization. Optik Int J Light Electron Opt. 2016;127(20):8570–5.

    Article  CAS  Google Scholar 

  3. Czech H, Schepler C, Klingbeil S, Ehlert S, Howell J, Zimmermann R. Resolving coffee roasting-degree phases based on the analysis of volatile compounds in the roasting off-gas by photoionization time-of-flight mass spectrometry (PI-TOFMS) and statistical data analysis: toward a PI-TOFMS roasting model. J Agric Food Chem. 2016;64(25):5223–31.

    Article  CAS  Google Scholar 

  4. Germann M, Willitsch S. Fine-and hyperfine-structure effects in molecular photoionization: II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations. J Chem Phys. 2016;145:044315.

    Article  Google Scholar 

  5. Poullain SM, Chicharro DV, Zanchet A, Gonzalez MG, Rubio-Lago L, Senent ML, et al. Imaging the photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states. Phys Chem Chem Phys. 2016;18:17054–61.

    Article  Google Scholar 

  6. Palmer MH, Ridley T, Hoffmann SV, Jones NC, Coreno M, De Simone M, et al. Combined theoretical and experimental study of the valence, Rydberg and ionic states of fluorobenzene. J Chem Phys. 2016;144(20):204305.

    Article  Google Scholar 

  7. Srinivas D, Upadhyaya HP. Chlorine atom formation dynamics in the dissociation of halogenated pyridines after photoexcitation at 235nm: a resonance enhanced multiphoton ionization-time of flight (REMPI-TOF) study. Chem Phys. 2016;472:208–17.

    Article  CAS  Google Scholar 

  8. Schmidt-May AF, Grütter M, Neugebohren J, Kitsopoulos TN, Wodtke AM, Harding DJ. Rotationally resolved vacuum ultraviolet resonance-enhanced multiphoton ionization (VUV REMPI) of acetylene via the G̃ Rydberg state. J Phys Chem A. 2016;120(27):5399–407.

    Article  CAS  Google Scholar 

  9. Tsuda Y, Uchimura T. Evaluating the aging of multiple emulsions using resonance-enhanced multiphoton ionization time-of-flight mass spectrometry. Anal Sci. 2016;32(7):789–95.

    Article  CAS  Google Scholar 

  10. Boesl U, Neusser HJ, Schlag EW. Multi-photon ionization in the mass spectrometry of polyatomic molecules: cross sections. Chem Phys. 1981;55(2):193–204.

    Article  CAS  Google Scholar 

  11. Hahn JH, Zenobi R, Zare RN. Subfemtomole quantitation of molecular adsorbates by two-step laser mass spectrometry. J Am Chem Soc. 1987;109(9):2842–3.

    Article  CAS  Google Scholar 

  12. Lubman DM, Kronick MN. Mass spectrometry of aromatic molecules with resonance-enhanced multiphoton ionization. Anal Chem. 1982;54(4):660–5.

    Article  CAS  Google Scholar 

  13. Tembreull R, Sin CH, Pang HM, Lubman DM. Resonance enhanced multiphoton ionization spectroscopy for detection of azabenzenes in supersonic beam mass spectrometry. Anal Chem. 1985;57(14):2911–7.

    Article  CAS  Google Scholar 

  14. Schechter I, Schröder H, Kompa KL. A simplified method for absolute MPI cross-section measurements. Application to three-photon non-resonant ionization of Xe at 266 nm. Chem Phys Lett. 1992;194(1-2):128–34.

    Article  CAS  Google Scholar 

  15. Schechter I, Schroeder H, Kompa KL. Quantitative laser mass analysis by time resolution of the ion-induced voltage in multiphoton ionization processes. Anal Chem. 1992;64(22):2787–96.

    Article  CAS  Google Scholar 

  16. Schechter I, Schroeder H, Kompa KL. New sensor for ecological determination of benzene in ambient air. Anal Chem. 1993;65(14):1928–31.

    Article  CAS  Google Scholar 

  17. Litani-Barzilai I, Bulatov V, Gridin VV, Schechter I. Detector based on time-resolved ion-induced voltage in laser multiphoton ionization and laser-induced fluorescence. Anal Chim Acta. 2004;501(2):151–6.

    Article  CAS  Google Scholar 

  18. Gridin VV, Korol A, Bulatov V, Schechter I. Laser two-photon ionization of pyrene on contaminated soils. Anal Chem. 1996;68(19):3359–63.

    Article  CAS  Google Scholar 

  19. Gridin VV, Bulatov V, Korol A, Schechter I. Particulate material analysis by a laser ionization fast conductivity method. Water content effects. Anal Chem. 1997;69(3):478–84.

    Article  CAS  Google Scholar 

  20. Gridin VV, Bulatov V, Korol A, Schechter I. Photoionization fast-conductivity technique for analysis of traffic contaminated soils. Instrum Sci Technol. 1997;25(4):321–33.

    Article  CAS  Google Scholar 

  21. Gridin VV, Litani-Barzilai I, Kadosh M, Schechter I. Determination of aqueous solubility and surface adsorption of polycyclic aromatic hydrocarbons by laser multiphoton ionization. Anal Chem. 1998;70(13):2685–92.

    Article  CAS  Google Scholar 

  22. Kadosh M, Gridin VV, Schechter I. Detection of time‐resolved photoionization currents from pesticide‐contaminated vegetation. Isr J Chem. 2001;41(2):99–104.

    Article  CAS  Google Scholar 

  23. Yamada S, Sato N, Kawazumi H, Ogawa T. Laser two-photon ionization spectrometry of perylene and naphthacene in hexane. Anal Chem. 1987;59(22):2719–21.

    Article  CAS  Google Scholar 

  24. Inoue T, Gridin VV, Ogawa T, Schechter I. Simultaneous laser-induced multiphoton ionization and fluorescence for analysis of polycyclic aromatic hydrocarbons. Anal Chem. 1998;70(20):4333–8.

    Article  CAS  Google Scholar 

  25. Gridin VV, Litani-Barzilai I, Kadosh M, Schechter I. A renewable liquid droplet method for on-line pollution analysis by multi-photon ionization. Anal Chem. 1997;69(11):2098–102.

    Article  CAS  Google Scholar 

  26. Bulatov V, Gridin VV, Polyak F, Schechter I. Application of pulsed laser methods to in situ probing of highway originated pollutants. Anal Chim Acta. 1997;343(1):93–9.

    Article  CAS  Google Scholar 

  27. Gridin VV, Inoue T, Ogawa T, Schechter I. On-line screening of airborne PAH contamination by simultaneous multiphoton ionization and laser induced fluorescence. Instrum Sci Technol. 2000;28:131.

    Article  CAS  Google Scholar 

  28. Litani-Barzilai I, Fisher M, Gridin VV, Schechter I. Fast filter-sampling and analysis of PAH aerosols by laser multiphoton ionization. Anal Chim Acta. 2001;439(1):1–8.

    Article  CAS  Google Scholar 

  29. Johnson PM. Molecular multiphoton ionization spectroscopy. Appl Opt. 1980;19(23):3920–5.

    Article  CAS  Google Scholar 

  30. Siomos K, Kourouklis G, Christophorou LG. Laser two-photon ionization of organic molecules in dielectric liquids. Chem Phys Lett. 1981;80(3):504–11.

    Article  CAS  Google Scholar 

  31. Siomos K, Christophorou LG. Laser two-photon ionization spectroscopy of molecules in liquids. Chem Phys Lett. 1980;72(1):43–8.

    Article  CAS  Google Scholar 

  32. Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72(4):652–7.

    Article  CAS  Google Scholar 

  33. Chen Y, Bulatov V, Vinerot N, Schechter I. Multiphoton ionization spectroscopy as a diagnostic technique of surfaces under ambient conditions. Anal Chem. 2010;82(9):3454–6.

    Article  CAS  Google Scholar 

  34. Vinerot N, Chen Y, Bulatov V, Gridin VV, Fun-Young V, Schechter I. Spectral characterization of surfaces using laser multi-photon ionization. Opt Mater. 2011;34(2):329–35.

    Article  CAS  Google Scholar 

  35. Tang S, Vinerot N, Fisher D, Bulatov V, Yavetz-Chen Y, Schechter I. Detection and mapping of trace explosives on surfaces under ambient conditions using multiphoton electron extraction spectroscopy (MEES). Talanta. 2016;155:235–44.

    Article  CAS  Google Scholar 

  36. McClain WM. Two-photon molecular spectroscopy. Acc Chem Res. 1974;7(5):129–35.

    Article  CAS  Google Scholar 

  37. Rumelfanger R, Asher SA, Perry MB. UV resonance Raman characterization of polycyclic aromatic hydrocarbons in coal liquid distillates. Appl Spectrosc. 1988;42(2):267–72.

    Article  CAS  Google Scholar 

  38. Chakraborty D, Ambashta R, Manogaran S. Force field and assignment of the vibrational spectrum of anthracene: theoretical prediction. J Phy Chem. 1996;100(33):13963–70.

    Article  CAS  Google Scholar 

  39. Shinohara H, Yamakita Y, Ohno K. Raman spectra of polycyclic aromatic hydrocarbons. Comparison of calculated Raman intensity distributions with observed spectra for naphthalene, anthracene, pyrene, and perylene. J Mol Struct. 1998;442(1):221–34.

    Article  CAS  Google Scholar 

  40. Blanco M, Villarroya IN. NIR spectroscopy: a rapid-response analytical tool. Trends Anal Chem. 2002;21(4):240–50.

    Article  CAS  Google Scholar 

  41. Goormaghtigh E, Ruysschaert JM, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J. 2006;90(8):2946–57.

    Article  CAS  Google Scholar 

  42. Price JC. On the information content of soil reflectance spectra. Remote Sens Environ. 1990;33(2):113–21.

    Article  Google Scholar 

  43. Purser RJ, Huang HL. Estimating effective data density in a satellite retrieval or an objective analysis. J Appl Meteorol. 1993;32(6):1092–107.

    Article  Google Scholar 

  44. Dupuis PF, Dijkstra A. An information theoretical evaluation of the applicability of the ASTM infrared data base for retrieval purposes. Fresenius' Z Anal Chem. 1978;290(5):357–68.

    Article  CAS  Google Scholar 

  45. Ghasemi JB, Heidari Z, Jabbari A. Toward a continuous wavelet transform-based search method for feature selection for classification of spectroscopic data. Chemom Intell Lab Syst. 2013;127:185–94.

    Article  CAS  Google Scholar 

  46. Buriez JC, Fouquart Y. Information content of a planetary spectrum. J Quant Spectrosc Radiat Transf. 1982;28(4):327–42.

    Article  CAS  Google Scholar 

  47. Chandler DM, Field DJ. Estimates of the information content and dimensionality of natural scenes from proximity distributions. J Opt Soc Am A. 2007;24(4):922–41.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Israeli Ministry of Science and Technology, by the Office of the Chief Scientist, Israeli Ministry Economy, and by Technion—Israel Institute of Technology (VPR fund). V. Bulatov thanks the Israeli Ministry of Absorption for financial support of new immigrant scientists. S. Tang appreciates the financial support from the China Scholarship Council for performing research at Technion, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Schechter.

Ethics declarations

Funding

This study was supported in part by the Israeli Ministry of Science and Technology, by the Office of the Chief Scientist, Israeli Ministry Economy, and by Technion—Israel Institute of Technology (VPR fund).

V. Bulatov received financial support (partial salary) from the Israeli Ministry of Absorption for new immigrant scientists.

S. Tang received financial support (fellowship) from the China Scholarship Council for performing research at Technion, Israel.

Technion provided financial support for attending conferences.

Patents

MEES technology has been patented. The inventors are I. Schechter and V. Bulatov. The owner is Technion—Israel Institute of Technology. According to Technion regulations, if royalties are obtained, part might be shared with the inventors.

Conflict of interest

The authors declare that they have no conflict of interest.

The authors declare that to the best of their knowledge, no data, text, or theories by others are presented as if they were the author’s own.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Vinerot, N., Bulatov, V. et al. Multiphoton electron extraction spectroscopy and its comparison with other spectroscopies for direct detection of solids under ambient conditions. Anal Bioanal Chem 408, 8037–8051 (2016). https://doi.org/10.1007/s00216-016-9904-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9904-2

Keywords

Navigation