Skip to main content
Log in

Determination of chemical purity and isotopic composition of natural and carbon-13-labeled arsenobetaine bromide standards by quantitative1H-NMR

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we report the characterization of three arsenobetaine-certified reference materials by quantitative NMR. We have synthesized an arsenobetaine bromide high-purity standard of natural isotopic composition (ABET-1) and two carbon-13-labeled isotopic standards (BBET-1 and CBET-1). Assignments of the chemical purity and isotopic composition are not trivial in the case of arsenobetaine, and in this study we utilized quantitative1H-NMR techniques for the determination of the mass fractions (chemical purity). The isotopic purity of all three standards was also assessed by NMR from the carbon-13 satellite signals. The standards are non-hygroscopic, high-purity (ca. 0.99 g/g), and the carbon-13 enrichment for both isotopic standards is x(13C)≈0.99. These standards are designed for use as primary calibrators for mass spectrometric determination of arsenobetaine in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edmonds JS, Francesconi KA. Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 1981;289(5798):602–04. Available from. doi:10.1038/289602a0.

    Article  CAS  Google Scholar 

  2. BIPM. 2007. Arsenic and arsenobetaine content in marine fish. CCQM Pilot study P96.

  3. Miura T, Chiba K, Kuroiwa T, Narukawa T, Hioki A, Matsue H. Accurate determination of arsenic in arsenobetaine standard solutions of BCR-626 and NMIJ CRM 7901-a by neutron activation analysis coupled with internal standard method. Talanta 2010;82(4):1143–48. Available from. doi:10.1016/j.talanta.2010.06.024.

    Article  CAS  Google Scholar 

  4. Yang L, Ding J, Maxwell P, McCooeye M, Windust A, Ouerdane L, et al. Determination of Arsenobetaine in fish tissue by species specific isotope dilution LC-LTQ-Orbitrap-MS and standard addition LC-ICPMS. Anal Chem 2011;83(9):3371–78. Available from. doi:10.1021/ac103258m.

    Article  CAS  Google Scholar 

  5. Minhas R, Forsyth DS, Dawson B. Synthesis and characterization of arsenobetaine and arsenocholine derivatives. Appl Organomet Chem 1998;12(8-9):635–41.

    Article  CAS  Google Scholar 

  6. Westwood S, Choteau T, Daireaux A, Josephs RD, Wielgosz RI. Mass balance method for the SI value assignment of the purity of organic compounds. Anal Chem 2013;85(6):3118–26. Available from. doi:10.1021/ac303329k.

    Article  CAS  Google Scholar 

  7. Westwood S, Josephs R, Daireaux A, Wielgosz R, Davies S, Wang H, et al. Final report on key comparison CCQM-K55.a (estradiol): an international comparison of mass fraction purity assignment of estradiol. Metrologia 2012;49(1A): 08009. Available from: http://stacks.iop.org/0026-1394/49/i=1A/a=08009 http://stacks.iop.org/0026-1394/49/i=1A/a=08009.

    Article  Google Scholar 

  8. Westwood S, Josephs R, Choteau T, Daireaux A, Mesquida C, Wielgosz R, et al. Final report on key comparison CCQM-K55.b (aldrin): an international comparison of mass fraction purity assignment of aldrin. Metrologia 2012;49(1A):08014. Available from: http://stacks.iop.org/0026-1394/49/i=1A/a=08014.

    Article  Google Scholar 

  9. Westwood S, Josephs R, Choteau T, Daireaux A, Wielgosz R, Davies S, et al. Final report on key comparison CCQM-K55.c (L-(+)-Valine): characterization of organic substances for chemical purity. Metrologia 2014; 51(1A):08010. Available from: http://stacks.iop.org/0026-1394/51/i=1A/a=08010.

    Article  Google Scholar 

  10. Lewis IA, Karsten RH, Norton ME, Tonelli M, Westler WM, Markley JL. NMR method for measuring carbon-13 isotopic enrichment of metabolites in complex solutions. Anal Chem 2010;82(11):4558–63. Available from. doi:10.1021/ac100565b.

    Article  CAS  Google Scholar 

  11. Fujiwara S, Arata Y, Ozawa H, Kunugi M. NMR satellites as a probe for chemical investigations. Pure Appl Chem 1972;32(1–4):117–22. Available from: doi:10.1351/pac197232010117 10.1351/pac197232010117.

    CAS  Google Scholar 

  12. Edmonds JS, Nomachi M, Morita M. Deuterium exchange in arsenobetaine and dimethylarsinoylacetic acid. J Inorg Biochem 2005;99(3):747–54. Available from. doi:10.1016/j.jinorgbio.2004.12.005.

    Article  CAS  Google Scholar 

  13. Toman B, Possolo A. Laboratory effects models for interlaboratory comparisons. Accred Qual Assur 2009; 14(10):553–63. Available from. doi:10.1007/s00769-009-0547-2.

    Article  Google Scholar 

  14. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177–88. Available from. doi:10.1016/0197-2456(86)90046-2.

    Article  CAS  Google Scholar 

  15. R Core Team. R: a language and environment for statistical computing. Austria: Vienna; 2015. Available from: http://www.R-project.org/.

    Google Scholar 

  16. Mana G, Massa E, Valkiers S, Willenberg GD. Uncertainty assessment of Si molar mass measurements. Int J Mass Spectrom 2010;289(1):6–10. Available from. doi:10.1016/j.ijms.2009.09.005.

    Article  CAS  Google Scholar 

  17. Meija J. Calibration of isotope amount ratios by analysis of isotope mixtures. Anal Bioanal Chem 2012;403(8): 2071–76. Available from. doi:10.1007/s00216-012-5785-1.

    Article  CAS  Google Scholar 

  18. Pagliano E, Mester Z, Meija J. Calibration graphs in isotope dilution mass spectrometry. Analytica Chimica Acta 2015;896:63–67. Available from. doi:10.1016/j.aca.2015.09.020.

    Article  CAS  Google Scholar 

  19. Meija J, Pagliano E, Mester Z. Coordinate swapping in standard addition graphs for analytical chemistry: a simplified path for uncertainty calculation in linear and nonlinear plots. Anal Chem 2014;86(17):8563–67. Available from. doi:10.1021/ac501474910.1021/ac50147.

    Article  CAS  Google Scholar 

  20. Meija J, Coplen TB, Berglund M, Brand WA, Bièvre P D, Gröning M, et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl Chem 2016;88(3):293–306. Available from. doi:10.1515/pac-2015-0503.

    CAS  Google Scholar 

  21. Meija J, Coplen TB, Berglund M, Brand WA, Bièvre P D, Gröning M, et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem 2016;88(3):265–291. Available from. doi:10.1515/pac-2015-0305.

    CAS  Google Scholar 

  22. Ipsen A. 2014. Ecipex: efficient calculation of fine structure isotope patterns via Fourier transforms of simplex-based elemental models. R package version 1.0. Available from: https://CRAN.R-project.org/package=ecipex.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Meija.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, PM., Ding, J., Leek, D.M. et al. Determination of chemical purity and isotopic composition of natural and carbon-13-labeled arsenobetaine bromide standards by quantitative1H-NMR. Anal Bioanal Chem 408, 7413–7421 (2016). https://doi.org/10.1007/s00216-016-9827-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9827-y

Keywords

Navigation