Skip to main content
Log in

MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Various analytical applications of metal–organic frameworks (MOFs) have been rapidly developed in the past few years. However, the employment of MOFs as catalysts in chemiluminescence (CL) analysis is rare. Here, for the first time, we found that MIL-53(Fe) MOFs could significantly enhance the CL of luminol in the presence of H2O2 in an alkaline medium. The CL intensity in the luminol–H2O2–MIL-53(Fe) system was about 20 times higher than that in the luminol–H2O2 system. Moreover, the XRD pattern of MIL-53(Fe) after CL reaction was almost the same as that of the original MIL-53(Fe), confirming the catalytic role of MIL-53(Fe) in the luminol–H2O2–MIL-53(Fe) system. The possible mechanism behind the enhancing phenomenon was discussed based on the results from the CL spectra, FL probe experiments, and active oxygen species measurements. By coupling with the glucose oxidase-based catalytic oxidation reaction, a sensitive and selective CL method was developed for the detection of glucose. There is a linear relationship between the logarithm of CL intensity and the logarithm of glucose concentration in the range from 0.1 to 10 μM, and a detection limit of 0.05 μM (S/N = 3) is obtained. The proposed method has been applied to the determination of glucose in human serum samples with satisfactory results.

MIL-53(Fe) MOFs are found to greatly enhance the chemiluminescence emission of the luminol–H2O2 system, and this finding resulted in a new chemiluminescence method for biosensing of glucose when coupled with the glucose oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Chen H, Lin L, Li H, Li J, Lin JM. Aggregation-induced structure transition of protein-stabilized zinc/copper nanoclusters for amplified chemiluminescence. ACS Nano. 2015;9:2173–83.

    Article  CAS  Google Scholar 

  2. Zhou W, Cao Y, Sui D, Lu C. Radical pair-driven luminescence of quantum dots for specific detection of peroxynitrite in living cells. Anal Chem. 2016;88:2659–65.

    Article  CAS  Google Scholar 

  3. Shi W, Zhang X, He S, Huang Y. CoFe2O4 magnetic nanoparticles as peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun. 2011;47:10785–7.

    Article  CAS  Google Scholar 

  4. Zhang LJ, Chen YC, Zhang ZM, Lu C. Highly selective sensing of hydrogen peroxide based on cobalt–ethylenediaminetetraacetate complex intercalated layered double hydroxide-enhanced luminol chemiluminescence. Sensors Actuators B Chem. 2014;193:752–8.

    Article  CAS  Google Scholar 

  5. Li N, Liu D, Cui H. Metal-nanoparticle-involved chemiluminescence and its applications in bioassays. Anal Bioanal Chem. 2014;406:5561–71.

    Article  CAS  Google Scholar 

  6. He Y, He X, Liu X, Gao L, Cui H. Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and its application to protein sensing arrays. Anal Chem. 2014;86:12166–71.

    Article  CAS  Google Scholar 

  7. He S, Shi W, Zhang X, Li J, Huang Y. β-cyclodextrins-based inclusion complexes of CoFe2O4 magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection. Talanta. 2010;82:377–83.

    Article  CAS  Google Scholar 

  8. Guan G, Yang L, Mei Q, Zhang K, Zhang Z, Han M. Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem. 2012;84:9492–7.

    Article  CAS  Google Scholar 

  9. Dong S, Zhong J, Lu C. Introducing confinement effects into ultraweak chemiluminescence for an improved sensitivity. Anal Chem. 2014;86:7947–53.

    Article  CAS  Google Scholar 

  10. Guo Y, Li B. Carbon dots-initiated luminol chemiluminescence in the absence of added oxidant. Carbon. 2015;82:459–69.

    Article  CAS  Google Scholar 

  11. Dou X, Lin Z, Chen H, Zheng Y, Lu C, Lin JM. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem Commun. 2013;49:5871–3.

    Article  CAS  Google Scholar 

  12. Wang Z, Liu F, Teng X, Zhao C, Lu C. Detection of hydrogen peroxide in rainwater based on Mg-Al-carbonate layered double hydroxides-catalyzed luminol chemiluminescence. Analyst. 2011;136:4986–90.

    Article  CAS  Google Scholar 

  13. Zhou W, Cao Y, Sui D, Lu C. Turn-on luminescent probes for the real-time monitoring of endogenous hydroxyl radicals in living cells. Angew Chem Int Ed. 2016;55:4236–41.

    Article  CAS  Google Scholar 

  14. Tang Y, Su Y, Yang N, Zhang L, Lv Y. Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. 2014;86:4528–35.

    Article  CAS  Google Scholar 

  15. Dong S, Liu F, Lu C. Organo-modified hydrotalcite-quantum dots nanocomposites as novel chemiluminescence resonance energy transfer probe. Anal Chem. 2013;85:3363–8.

    Article  CAS  Google Scholar 

  16. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal–organic framework materials as chemical sensors. Chem Rev. 2012;112:1105–25.

    Article  CAS  Google Scholar 

  17. Li J, Sculley J, Zhou H-C. Metal–organic frameworks for separations. Chem Rev. 2012;112:869–932.

    Article  CAS  Google Scholar 

  18. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.

    Article  CAS  Google Scholar 

  19. Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chem Rev. 2012;112:1126–62.

    Article  CAS  Google Scholar 

  20. Yang CX, Ren HB, Yan XP. Fluorescent metal–organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution. Anal Chem. 2013;85:7441–6.

    Article  CAS  Google Scholar 

  21. Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC. Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed. 2012;51:10307–10.

    Article  CAS  Google Scholar 

  22. Ai L, Li L, Zhang C, Fu J, Jiang J. MIL-53(Fe): a metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem Eur J. 2013;19:15105–8.

    Article  CAS  Google Scholar 

  23. Zhang J, Zhang H, Du Z, Wang X, Yu S, Jiang H. Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun. 2014;50:1092–4.

    Article  CAS  Google Scholar 

  24. Zhu Q, Chen Y, Wang W, Zhang H, Ren C, Chen H, et al. A sensitive biosensor for dopamine determination based on the unique catalytic chemiluminescence of metal–organic framework HKUST-1. Sensors Actuators B Chem. 2015;210:500–7.

    Article  CAS  Google Scholar 

  25. Yang N, Song H, Wan X, Fan X, Su Y, Lv Y. A metal (Co)-organic framework-based chemiluminescence system for selective detection of L-cysteine. Analyst. 2015;140:2656–63.

    Article  CAS  Google Scholar 

  26. Luo F, Lin Y, Zheng L, Lin X, Chi Y. Encapsulation of Hemin in metal–organic frameworks for catalyzing the chemiluminescence reaction of the H2O2–luminol system and detecting glucose in the neutral condition. ACS Appl Mater Interfaces. 2015;7:11322–9.

    Article  CAS  Google Scholar 

  27. Deng H, Wu G, He D, Peng H, Liu A, Xia X, et al. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst. 2015;140:7650–6.

    Article  CAS  Google Scholar 

  28. Han L, Zeng L, Wei M, Lie CM, Liu A. A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay. Nanoscale. 2015;7:11678–85.

    Article  CAS  Google Scholar 

  29. Khajvand T, Alijanpour O, Chaichi MJ, Vafaeezadeh M, Hashemi MM. Imidazolium-based ionic liquid derivative/CuII complexes as efficient catalysts of the lucigenin chemiluminescence system and its application to H2O2 and glucose detection. Anal Bioanal Chem. 2015;407:6127–36.

    Article  CAS  Google Scholar 

  30. Sato T, Katayama K, Arai T, Sako T, Tazaki H. Simultaneous determination of serum mannose and glucose concentrations in dog serum using high performance liquid chromatography. Res Vet Sci. 2008;84:26–9.

    Article  CAS  Google Scholar 

  31. Wang Y, Li H, Kong J. Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing. Sensors Actuators B Chem. 2014;193:708–14.

    Article  CAS  Google Scholar 

  32. Jia J, Xu F, Long Z, Hou X, Spepaniak MJ. Metal–organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg. Chem Commun. 2013;49:4670–2.

    Article  CAS  Google Scholar 

  33. Haque E, Khan NA, Park JH, Jhung SH. Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem Eur J. 2010;16:1046–52.

    Article  CAS  Google Scholar 

  34. Lan D, Li B, Zhang Z. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron. 2008;24:934–8.

    Article  CAS  Google Scholar 

  35. Chaichi MJ, Ehsani M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sensors Actuators B Chem. 2016;223:713–22.

    Article  CAS  Google Scholar 

  36. Chen W, Hong L, Liu AL, Liu JQ, Lin XH, Xia XH. Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta. 2012;99:643–8.

    Article  CAS  Google Scholar 

  37. Hao M, Liu N, Ma Z. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst. 2013;138:4393–7.

    Article  CAS  Google Scholar 

  38. Zargoosh K, Chaichi MJ, Shamsipur M, Hossienkhanid S, Asghari S, Qandalee M. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in Nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta. 2012;93:37–43.

    Article  CAS  Google Scholar 

  39. Yu D, Wang P, Zhao Y, Fan A. Iodophenol blue-enhanced luminol chemiluminescence and its application to hydrogen peroxide and glucose detection. Talanta. 2016;146:655–61.

    Article  CAS  Google Scholar 

  40. Díez P, Piuleac C-G, Martínez-Ruiz P, Romano S, Gamella M, Villalonga R, et al. Supramolecular immobilization of glucose oxidase on gold coated with cyclodextrin-modified cysteamine core PAMAM G-4 dendron/Pt nanoparticles for mediatorless biosensor design. Anal Bioanal Chem. 2013;405:3773–81.

    Article  Google Scholar 

  41. Zhang H, Huang H, Lin Z, Su X. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide–DNA interaction. Anal Bioanal Chem. 2014;406:6925–32.

    Article  CAS  Google Scholar 

  42. Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.

    Article  CAS  Google Scholar 

  43. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47:6695–7.

    Article  CAS  Google Scholar 

  44. Ai L, Zhang C, Li L, Jiang J. Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B Environ. 2014;148–149:191–200.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (21277111 and 21465024) and the Fundamental Research Funds for the Central Universities (XDJK 2016D019) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Xie or Yuming Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Highlights of Analytical Chemical Luminescence with guest editors Aldo Roda, Hua Cui, and Chao Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Dong, W., Zhang, X. et al. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Anal Bioanal Chem 408, 8805–8812 (2016). https://doi.org/10.1007/s00216-016-9681-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9681-y

Keywords

Navigation