Skip to main content

Advertisement

Log in

A sensitive electrochemical impedance immunosensor for determination of malachite green and leucomalachite green in the aqueous environment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Application of malachite green (MG) and leucomalachite green (LMG) in fish farm water causes an environmental problem. This study proposes for the first time a sensitive and convenient electrochemical impedance spectroscopy (EIS) method for determining MG and LMG by a bovine serum albumin-decorated gold nanocluster (BSA-AuNC)/antibody composite film-based immunosensor. In order to improve the analytical performance, the glassy carbon electrode (GCE) was modified with 1, 4-phenylenediamine to form a stable layer, and then, BSA-AuNCs were covalently bound to the GCE. An adequate quantity of the polyclonal antibody of LMG was immobilized onto the surface of the BSA-AuNCs by the chemical reaction of EDC/NHS. The sensors can respond to the specific target based on specific covalent bonding. The experimental parameters, such as the pH, incubating concentration, and time, have been investigated and optimized. The calibration curve for LMG was linear in the range of 0.1~10.0 ng/mL with the limit of detection (LOD) 0.03 ng/mL. Furthermore, the sum of MG and LMG was detected in fish farm water by MG reduction. The recovery was between 89.7 % and 99.2 % in spiked samples. The EC sensor method was also compared with the ELISA method and validated by the LC–MS/MS method, which proves its great promise as a field instrument for the rapid monitoring of MG and LMG pollution.

1, 4-Phenylenediamine and BSA-AuNC/antibody-decorated glassy carbon electrodes have been used for the impedimetric detection of the sum of malachite green and leucomalachite green via specific immuno-binding

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang MC, Fang JM, Kuo TF, Wang DM, Huang YL, Liu LY, et al. Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water. J Agric Food Chem. 2007;55(22):8851–6.

    Article  CAS  Google Scholar 

  2. Mitrowska K, Posyniak A, Zmudzki J. Determination of malachite green and leucomalachite green residues in water using liquid chromatography with visible and fluorescence detection and confirmation by tandem mass spectrometry. J Chromatogr A. 2008;1207(1–2):94–100.

    Article  CAS  Google Scholar 

  3. Burchmore S, Wilkinson M. Proposed environmental quality standards for malachite green in water (DWE 9026). UK Department of the Environment, Transport, and the Regions Report No. 3167/2, prepared by the Water Research Centre, Marlow, Buckinghamshire, England. 1993.

  4. Jiang Y, Chen L, Hu K, Yu W, Yang X, Lu L. Development of a fast ELISA for the specific detection of both leucomalachite green and malachite green. J Ocean Univ China. 2014;14(2):340–4.

    Article  Google Scholar 

  5. Xing W, He L, Yang H, Sun C, Li D, Yang X, et al. Development of a sensitive and group-specific polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of malachite green and leucomalachite green in water and fish samples. J Sci Food Agric. 2009;89(13):2165–73.

    Article  CAS  Google Scholar 

  6. Zhang Y, Yu W, Pei L, Lai K, Rasco BA, Huang Y. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem. 2015;169:80–4.

    Article  CAS  Google Scholar 

  7. Ju S, Deng J, Cheng J, Xiao N, Huang K, Hu C, et al. Determination of leucomalachite green, leucocrystal violet and their chromic forms using excitation-emission matrix fluorescence coupled with second-order calibration after dispersive liquid-liquid microextraction. Food Chem. 2015;185:479–87.

    Article  CAS  Google Scholar 

  8. Dong JX, Xu C, Wang H, Xiao ZL, Gee SJ, Li ZF, et al. Enhanced sensitive immunoassay: noncompetitive phage anti-immune complex assay for the determination of malachite green and leucomalachite green. J Agric Food Chem. 2014;62(34):8752–8.

    Article  CAS  Google Scholar 

  9. Privett BJ, Shin JH, Schoenfisc MH. Electrochemical sensors. Anal Chem. 2010;82(12):4723–41.

    Article  CAS  Google Scholar 

  10. Eric B. Electrochemical sensors. Anal Chem. 2004;76(12):3285–98.

    Article  Google Scholar 

  11. Vasudev A, Kaushik A, Bhansali S. Electrochemical immunosensor for label free epidermal growth factor receptor (EGFR) detection. Biosens Bioelectron. 2013;39(1):300–5.

    Article  CAS  Google Scholar 

  12. Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2015;87(1):230–49.

    Article  CAS  Google Scholar 

  13. Pejcic B, De Marco R. Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta. 2006;51(28):6217–29.

    Article  CAS  Google Scholar 

  14. Hayat A, Barthelmebs L, Marty J-L. Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sensors Actuators B Chem. 2012;171–172:810–5.

    Article  Google Scholar 

  15. Yu L, Zhang Y, Hu C, Wu H, Yang Y, Huang C, et al. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1 in olive oil. Food Chem. 2015;176:22–6.

    Article  CAS  Google Scholar 

  16. Yang P, Zheng Q, Xu H, Liu J, Jin L. A highly sensitive electrochemical impedance spectroscopy immunosensor for determination of 1-pyrenebutyric acid based on the bifunctionality of Nafion/gold nanoparticles composite electrode. Chin J Chem. 2012;30(5):1155–62.

    Article  CAS  Google Scholar 

  17. Sun X, Ma Z. Highly stable electrochemical immunosensor for carcinoembryonic antigen. Biosens Bioelectron. 2012;35(1):470–4.

    Article  CAS  Google Scholar 

  18. Zhang Y, Li B, Yan C, Fu L. One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. Biosens Bioelectron. 2011;26(8):3505–10.

    Article  CAS  Google Scholar 

  19. Anjum SQW, Gao W, Zhao J, Hanif S, Aziz-ur-Rehman, Xu G. Fabrication of biomembrane-like films on carbon electrodes using alkanethiol and diazonium salt and their application for direct electrochemistry of myoglobin. Biosens Bioelectron. 2015;65:159–65.

    Article  CAS  Google Scholar 

  20. Xie J, Zheng Y, Jackie YY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888–9.

    Article  CAS  Google Scholar 

  21. Liu H, Malhotra R, Peczuh MW, Rusling JF. Electrochemical immunosensors for antibodies to peanut allergen ara h2 using gold nanoparticle-peptide films. Anal Chem. 2010;82(13):5865–71.

    Article  CAS  Google Scholar 

  22. Wang M, Kang H, Xu D, Wang C, Liu S, Hu X. Label-free impedimetric immunosensor for sensitive detection of fenvalerate in tea. Food Chem. 2013;141(1):84–90.

    Article  CAS  Google Scholar 

  23. Mashazi P, Tetyana P, Vilakazi S, Nyokong T. Electrochemical impedimetric immunosensor for the detection of measles-specific IgG antibodies after measles infections. Biosens Bioelectron. 2013;49:32–8.

    Article  CAS  Google Scholar 

  24. Chen Y, Yang Y, Tu Y. An electrochemical impedimetric immunosensor for ultrasensitive determination of ketamine hydrochloride. Sensors Actuators B Chem. 2013;183:150–6.

    Article  CAS  Google Scholar 

  25. Ahmed A, Rushworth JV, Wright JD, Millner PA. Novel impedimetric immunosensor for detection of pathogenic bacteria Streptococcus pyogenes in human saliva. Anal Chem. 2013;85(24):12118–25.

    Article  CAS  Google Scholar 

  26. Deng J, Li L, Yang X, Cen J, Xin S, Wei Y, et al. Determination of malachite green in water using solid phase extraction-high performance liquid chromatography with fluorescence detection. Food Sci. 2012;33(14):150–3.

    Google Scholar 

  27. Han S, Yuan Y, Hu L, Xu G. Electrochemical derivatization of carbon surface by reduction of diazonium salts in situ generated from nitro precursors in aqueous solutions and electrocatalytic ability of the modified electrode toward hydrogen peroxide. Electrochem Commun. 2010;12(12):1746–8.

    Article  CAS  Google Scholar 

  28. Cougnon C, Gohier F, Belanger D, Mauzeroll J. In situ formation of diazonium salts from nitro precursors for scanning electrochemical microscopy patterning of surfaces. Angew Chem. 2009;48(22):4006–8.

    Article  CAS  Google Scholar 

  29. Cougnon C, Mauzeroll J, Belanger D. Patterning of surfaces by oxidation of amine-containing compounds using scanning electrochemical microscopy. Angew Chem. 2009;48(40):7395–7.

    Article  CAS  Google Scholar 

  30. Zhang K, Ji J, Fang X, Yan L, Liu B. Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing. Analyst. 2015;140:134–9.

    Article  CAS  Google Scholar 

  31. Santhosh M, Chinnadayyala SR, Kakoti A, Goswami P. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosens Bioelectron. 2014;59:370–6.

    Article  CAS  Google Scholar 

  32. Shang L, Yang L, Seiter J, Heinle M, Brenner-Weiss G, Gerthsen D et al. Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Adv Mater Interfaces. 2014;1(2).

  33. Marradi M, Di Gianvincenzo P, Enriquez-Navas PM, Martinez-Avila OM, Chiodo F, Yuste E, et al. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol. 2011;410(5):798–810.

    Article  CAS  Google Scholar 

  34. Rezaei B, Askarpour N, Ensafi AA. A novel sensitive doxorubicin impedimetric immunosensor based on a specific monoclonal antibody-gold nanoparticle-sol-gel modified electrode. Talanta. 2014;119:164–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (31371779) and the International Science and Technology Cooperation Program of China (2015DFG31890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Li, Q., Pang, X. et al. A sensitive electrochemical impedance immunosensor for determination of malachite green and leucomalachite green in the aqueous environment. Anal Bioanal Chem 408, 5593–5600 (2016). https://doi.org/10.1007/s00216-016-9660-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9660-3

Keywords

Navigation