Skip to main content
Log in

Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Passiflora incarnata as well as some other Passiflora species are reported to possess anxiolytic and sedative activity and to treat various CNS disorders. The medicinal use of only a few Passiflora species has been scientifically verified. There are over 400 species in the Passiflora genus worldwide, most of which have been little characterized in terms of phytochemical or pharmacological properties. Herein, large-scale multi-targeted metabolic profiling and fingerprinting techniques were utilized to help gain a broader insight into Passiflora species leaves’ chemical composition. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) spectra of extracted components derived from 17 Passiflora accessions and from different geographical origins were analyzed using multivariate data analyses. A total of 78 metabolites were tentatively identified, that is, 20 C-flavonoids, 8 O-flavonoids, 21 C, O-flavonoids, 2 cyanogenic glycosides, and 23 fatty acid conjugates, of which several flavonoid conjugates are for the first time to be reported in Passiflora spp. To the best of our knowledge, this study provides the most complete map for secondary metabolite distribution within that genus. Major signals in 1H-NMR and MS spectra contributing to species discrimination were assigned to those of C-flavonoids including isovitexin-2″-O-xyloside, luteolin-C-deoxyhexoside-O-hexoside, schaftoside, isovitexin, and isoorientin. P. incarnata was found most enriched in C-flavonoids, justifying its use as an official drug within that genus. Compared to NMR, LC-MS was found more effective in sample classification based on genetic and/ or geographical origin as revealed from derived multivariate data analyses. Novel insight on metabolite candidates to mediate for Passiflora CNS sedative effects is also presented.

A comparative NMR and MS spectra of extracted components derived from 17 Passiflora accessions to be analyzed using multivariate data analyses for species classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simpson MG. Plant systematics. 2nd ed. Burlington, MA: Academic; 2010.

    Google Scholar 

  2. Mabberley DJ. The plant-book: a portable dictionary of the vascular plants. 2nd ed. New York: Cambridge University Press; 1997.

    Google Scholar 

  3. Brasseur T, Angenot L. The pharmacognosy of the passion flower. J Pharm Belg. 1984;39(1):15–22.

    CAS  Google Scholar 

  4. Bergner P. Passionflower. Med Herbalism. 1995;7:13–4.

    Google Scholar 

  5. Ingale AG, Hivrale AU. Pharmacological studies of Passiflora sp. and their bioactive compounds. African J Plant Sci. 2010;4:417–26.

    CAS  Google Scholar 

  6. Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9(42):1–14. doi:10.1186/1475-2891-9-42.

    Google Scholar 

  7. Fiebich BL, Knoerle R, Appel K, Kammler T, Weiss G. Pharmacological studies in an herbal drug combination of St. John’s Wort (Hypericum perforatum) and passion flower (Passiflora incarnata): in vitro and in vivo evidence of synergy between Hypericum and Passiflora in antidepressant pharmacological models. Fitoterapia. 2011;82(3):474–80. doi:10.1016/j.fitote.2010.12.006.

    Article  CAS  Google Scholar 

  8. Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol. 2011;21(12):841–60. doi:10.1016/j.euroneuro.2011.04.002.

    Article  CAS  Google Scholar 

  9. Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. J Ethnopharmacol. 2004;94(1):1–23. doi:10.1016/j.jep.2004.02.023.

    Article  CAS  Google Scholar 

  10. Wessjohann LA, Keim J, Weigel B, Dippe M. Alkylating enzymes. Curr Opin Chem Biol. 2013;17(2):229–35. doi:10.1016/j.cbpa.2013.02.016.

    Article  CAS  Google Scholar 

  11. Aoyagi N, Kimura R, Murata T. Studies on Passiflora incarnata dry extract. I. Isolation of maltol and pharmacological action of maltol and ethyl maltol. Chem Pharm Bull. 1974;22(5):1008–13.

    Article  CAS  Google Scholar 

  12. Lutomski J, Malek B. Pharmacochemical investigations on raw materials genus Passiflora. 3. Phytochemical investigations on raw materials of Passiflora edulis forma flavicarpa (Pharmakochemische Untersuchungen von Drogen der Gattung Passiflora. 3. Mitteilung: Phytochemische Forschung der Drogen aus Passiflora edulis forma flavicarpa). Planta Med. 1975;27(3):222–5.

    Article  CAS  Google Scholar 

  13. Congora C, Proliac A, Raynaud J. Isolation and identification of two mono-C-glucosyl luteolins and of the di-C-substituted 6,8-diglucosyl luteolin from the leafy stalks of P. incarnanta L. Helv Chim Acta. 1986;69:251–3.

    Article  CAS  Google Scholar 

  14. Wolfman C, Viola H, Paladini A, Dajas F, Medina JH. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora caerulea. Pharmacol Biochem Behav. 1994;47(1):1–4.

    Article  CAS  Google Scholar 

  15. Farag MA, Porzel A, Wessjohann LA. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry. 2012;76:60–72. doi:10.1016/j.phytochem.2011.12.010.

    Article  CAS  Google Scholar 

  16. Okada T, Nakamura Y, Kanaya S, Takano A, Malla KJ, Nakane T, et al. Metabolome analysis of Ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med. 2009;75(12):1356–62. doi:10.1055/s-0029-1185577.

    Article  CAS  Google Scholar 

  17. Farag M, Mahrous E, Lübken T, Porzel A, Wessjohann L. Classification of commercial cultivars of Humulus lupulus L. (hop) by chemometric pixel analysis of two dimensional nuclear magnetic resonance spectra. Metabolomics. 2013;10(1):21–32. doi:10.1007/s11306-013-0547-4.

    Google Scholar 

  18. Farag MA, Porzel A, Schmidt J, Wessjohann LA. Metabolite profiling and fingerprinting of commercial cultivars of L. (hop): a comparison of MS and NMR methods in metabolomics. Metabolomics. 2012;8(3):492–507. doi:10.1007/s11306-011-0335-y.

    Article  CAS  Google Scholar 

  19. Farag MA, Wessjohann LA. Metabolome classification of commercial Hypericum perforatum (St. John’s Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med. 2012;78(5):488–96. doi:10.1055/s-0031-1298170.

    Article  CAS  Google Scholar 

  20. Farag MA, Porzel A, Mahrous EA, El-Massry MM, Wessjohann LA. Integrated comparative metabolite profiling via MS and NMR techniques for Senna drug quality control analysis. Anal Bioanal Chem. 2015;407(7):1937–49. doi:10.1007/s00216-014-8432-1.

    Article  CAS  Google Scholar 

  21. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87. doi:10.1021/ac051437y.

    Article  CAS  Google Scholar 

  22. Li H, Zhou P, Yang Q, Shen Y, Deng J, Li L, et al. Comparative studies on anxiolytic activities and flavonoid compositions of Passiflora edulisedulis’ and Passiflora edulisflavicarpa’. J Ethnopharmacol. 2011;133(3):1085–90. doi:10.1016/j.jep.2010.11.039.

    Article  CAS  Google Scholar 

  23. McCormick S, Mabry TJ. Flavonoids of Passiflora pavonis. J Nat Prod. 1981;44(5):623–4. doi:10.1021/np50017a025.

    Article  CAS  Google Scholar 

  24. Geiger H, Markham KR. The C-glycosylflavone pattern of Passiflora incarnata. Z Naturforsch C. 1986;41:949–50.

    CAS  Google Scholar 

  25. Patel SS, Soni H, Mishra K, Singhai AK. Recent updates on the genus Passiflora: a review. Int J Res Phytochem Pharmacol. 2011;1(1):1–16.

    CAS  Google Scholar 

  26. Simirgiotis MJ, Schmeda-Hirschmann G, Borquez J, Kennelly EJ. The Passiflora tripartita (banana passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC-DAD-ESI/MS/MS. Molecules. 2013;18(2):1672–92. doi:10.3390/molecules18021672.

    Article  CAS  Google Scholar 

  27. Ulubelen A, Mabry TJ. C-Glycosylflavonoids of Passiflora serratifolia. J Nat Prod. 1980;43(1):162–3. doi:10.1021/np50007a017.

    Article  CAS  Google Scholar 

  28. Escobar LK, Liu Y-L, Mabry TJ. C-glycosylflavonoids from Passiflora coactilis. Phytochemistry. 1983;22(3):796–7. doi:10.1016/S0031-9422(00)86995-2.

    Article  CAS  Google Scholar 

  29. McCormick S, Mabry TJ. O- and C-glycosylflavones from Passiflora biflora. Phytochemistry. 1983;22(3):798–9. 10.1016/S0031-9422(00)86996-4.

    Article  CAS  Google Scholar 

  30. Sakalem ME, Negri G, Tabach R. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Revista Brasileira De Farmacognosia (Braz J Pharmacogn). 2012;22(6):1219–32. doi:10.1590/s0102-695x2012005000108.

    Article  CAS  Google Scholar 

  31. Ferreres F, Sousa C, Valentao P, Andrade PB, Seabra RM, Gil-Izquierdo A. New C-deoxyhexosyl flavones and antioxidant properties of Passiflora edulis leaf extract. J Agric Food Chem. 2007;55(25):10187–93. doi:10.1021/jf072119y.

    Article  CAS  Google Scholar 

  32. Zhao J, Pawar RS, Ali Z, Khan IA. Phytochemical investigation of Turnera diffusa. J Nat Prod. 2007;70(2):289–92. doi:10.1021/np060253r.

    Article  CAS  Google Scholar 

  33. Mareck U, Herrmann K, Galensa R, Wray V. The 6-C-chinovoside and 6-C-fucoside of luteolin from Passiflora edulis. Phytochemistry. 1991;30(10):3486–7. doi:10.1016/0031-9422(91)83241-c.

    Article  CAS  Google Scholar 

  34. Avula B, Wang YH, Rumalla CS, Smillie TJ, Khan IA. Simultaneous determination of alkaloids and flavonoids from aerial parts of Passiflora species and dietary supplements using UPLC-UV-MS and HPTLC. Nat Prod Commun. 2012;7(9):1177–80.

    CAS  Google Scholar 

  35. de Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT. Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006;1112(1–2):31–63. doi:10.1016/j.chroma.2006.01.019.

    Article  Google Scholar 

  36. Simirgiotis MJ, Cuevas H, Tapia W, Borquez J. Edible Passiflora (banana passion) fruits: a source of bioactive C-glycoside flavonoids obtained by HSCCC and HPLC-DAD-ESI/MS/MS. Planta Med. 2012;78(11):1242–3.

    Article  Google Scholar 

  37. Davis BD, Brodbelt JS. Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15(9):1287–99. doi:10.1016/j.jasms.2004.06.003.

    Article  CAS  Google Scholar 

  38. Figueirinha A, Paranhos A, Pérez-Alonso JJ, Santos-Buelga C, Batista MT. Cymbopogon citratus leaves: characterization of flavonoids by HPLC-PDA-ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 2008;110(3):718–28. doi:10.1016/j.foodchem.2008.02.045.

    Article  CAS  Google Scholar 

  39. Ferreres F, Gil-Izquierdo A, Andrade PB, Valentao P, Tomas-Barberan FA. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1161(1–2):214–23. doi:10.1016/j.chroma.2007.05.103.

    Article  CAS  Google Scholar 

  40. Otify A, George C, Elsayed A, Farag MA. Mechanistic evidence of Passiflora edulis (Passifloraceae) anxiolytic activity in relation to its metabolite fingerprint as revealed via LC-MS and chemometrics. Food Funct. 2015;6(12):3807–17. doi:10.1039/C5FO00875A.

    Article  CAS  Google Scholar 

  41. Abad-Garcia B, Garmon-Lobato S, Berrueta LA, Gallo B, Vicente F. New features on the fragmentation and differentiation of C-glycosidic flavone isomers by positive electrospray ionization and triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(12):1834–42. doi:10.1002/rcm.3560.

    Article  CAS  Google Scholar 

  42. Chassagne D, Crouzet J. A cyanogenic glycoside from Passiflora edulis fruits. Phytochemistry. 1998;49(3):757–9. doi:10.1016/s0031-9422(98)00130-7.

    Article  CAS  Google Scholar 

  43. Li SS, Jiang ZM, Thamm L, Zhou GT. 10-Hydroxy-2-decenoic acid as an antimicrobial agent in draft keg-conditioned wheat beer. J Am Soc Mass Brew Chem. 2010;68:114–8.

    CAS  Google Scholar 

  44. Martin-Arjol I, Bassas-Galia M, Bermudo E, Garcia F, Manresa A. Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem Phys Lipids. 2010;163(4–5):341–6. doi:10.1016/j.chemphyslip.2010.02.003.

    Article  CAS  Google Scholar 

  45. Waluk DP, Battistini MR, Dempsey DR, Farrell EK, Jeffries KA, Mitchell P, Hernandez LW, McBride JC, Merkler DJ, Hunt MC (2014) Omega-3 fatty acids in brain and neurological health: chapter 9—mammalian fatty acid amides of the brain and CNS. Academic Press, Boston. doi:http://dx.doi.org/10.1016/B978-0-12-410527-0.00009-0

  46. Wei XY, Yang JY, Dong YX, Wu CF. Anxiolytic-like effects of oleamide in group-housed and socially isolated mice. Prog Neuropsychopharmacol. 2007;31(6):1189–95. doi:10.1016/j.pnpbp.2007.04.008.

    Article  CAS  Google Scholar 

  47. Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM. Application of chemometrics in authentication of herbal medicines: a review. Phytochem Anal. 2013;24(1):1–24. doi:10.1002/pca.2378.

    Article  CAS  Google Scholar 

  48. Kuriyama K, Sze PY. Blood–brain barrier to H3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology. 1971;10(1):103–8. doi:10.1016/0028-3908(71)90013-X.

    Article  CAS  Google Scholar 

  49. Tai Z, Cai L, Dai L, Dong L, Wang M, Yang Y, et al. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem. 2011;126(4):1648–54. doi:10.1016/j.foodchem.2010.12.048.

    Article  CAS  Google Scholar 

  50. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. doi:10.1186/1471-2164-7-142.

    Article  Google Scholar 

  51. Farag MA, Deavours BE, de Fatima A, Naoumkina M, Dixon RA, Sumner LW. Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiol. 2009;151(3):1096–113. doi:10.1104/pp.109.141481.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt-Foundation, Germany to Dr. Mohamed Farag and Prof. Dr. Ludger Wessjohann. Dr. Mohamed Ali Farag acknowledges the funding received by Science and Technology Development fund STDF, Egypt (grant number 12594). Prof. Dr. Ludger Wessjohann and Dr. Andrea Porzel acknowledge partial support from Leibniz-Wettbewerb SAW-2015-IPB-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Farag.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M.A., Otify, A., Porzel, A. et al. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal Bioanal Chem 408, 3125–3143 (2016). https://doi.org/10.1007/s00216-016-9376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9376-4

Keywords

Navigation