Skip to main content
Log in

Turbidimetric method for the determination of particle sizes in polypropylene/clay-composites during extrusion

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposites with polypropylene as matrix material and nanoclay as filler were produced in a double twin screw extruder. The extrusion was monitored with a spectrometer in the visible and near-infrared spectral region with a diode array spectrometer. Two probes were installed at the end at the extruder die and the transmission spectra were measured during the extrusion. After measuring the transmission spectra and converting into turbidity units, the particle distribution density was calculated via numerical linear equation system. The distribution density function shows either a bimodal or mono modal shape in dependence of the processing parameters like screw speed, dosage, and concentration of the nanoclays. The method was verified with SEM measurements which yield comparable results. The method is suitable for industrial in-line processing monitoring of particle radii and dispersion process, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A. 2005;393(1-2):1–11.

    Article  Google Scholar 

  2. Paul DR, Robeson LM. Polymer nanotechnology. Nanocomposites Polymer. 2008;49(15):3187–204.

    CAS  Google Scholar 

  3. Schönfeld S, Nanocomposites. Special; 2003:28–33.s

  4. Apfel U A. Turbidity study of particles interaction in latex suspensions. Colloid Polym Sci. 1994; 272(7):820–9.

  5. Rohe T, Becker W, Krey A, Nägele H, Kölle S, Eisenreich N. In-line monitoring of polymer extrusion processes by NIR spectroscopy. Near Infrared Spectrosc. 1998; 6:325–332.

  6. Rohe T, Kölle S. Inline nahinfrarotspectroskopie bei der kunststoffextrusion. GIT Labor-Fachzeitschrift; 2000.

  7. Becker W, Eisenrich N. Measurement of the Irganox content in polypropylene polymers during extrusion. J Near Infrared Spectrosc. 2005;13(1):147.

    Article  CAS  Google Scholar 

  8. Rohe T, Kölle S, Stern C, Eisenreich N, Eyerer P. Inline near infrared(NIR) spectroscopy for application in polymer extrusion processes. Recent Res. Devel. Pure & Applied Anal. Chem. 2001; (3).

  9. Furukawa T. On-line monitoring of melt extrusion transesterification of ethylene vinylacetate copolymers by near infrared spectroscopy and chemometrics. Journal of Near Infrared Spectroscopy. 2002; 195–202.

  10. Kerker M, Loebl EM. The scattering of light and other electromagnetic radiation. Physical chemistry. A Series of Monographs. Burlington: Elsevier Science; 1969.

    Google Scholar 

  11. Berdahl P, Espinoza LH, Littlejohn D, Lucas D, Perry DL. Near-infrared turbidity of ß-FeOOH particle suspensions. Appl Spectrosc.2000;54(2).

  12. Apfel U. Precise analysis of the turbidity spectra of a concentrated latex. Langmuir 1995; 11:3401−7.

  13. Kohlgrüber K. Co-rotating twin-screw extruder. München: Carl Hanser Verlag GmbH & Company KG; 2012.

  14. Nguyen QT, Baird DG. An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer. 2007;48(23):6923–33.

    Article  CAS  Google Scholar 

  15. Wang Y, Chen F-B, Wu K-C. Twin-screw extrusion compounding of polypropylene/organoclay nanocomposites modified by maleated polypropylenes. J Appl Polym Sci. 2004;93(1):100–12.

    Article  CAS  Google Scholar 

  16. Peltola P, Välipakka E, Vuorinen J, Syrjälä S, Hanhi K. Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites. Polym Eng Sci. 2006;46(8):995–1000.

    Article  CAS  Google Scholar 

  17. Kerker M. The scattering of light and other electromagnetic radiation. Physical chemistry, vol. 16. New York: Academic Press; 1969.

  18. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  19. Guschin V, Becker W, Eisenreich N, Bendfeld A. Determination of the nanoparticle size distribution in media by turbidimetric measurements. Chem Eng Technol. 2012;35(2):317–22.

    Article  CAS  Google Scholar 

  20. Phillips DL. A technique for the numerical solution of certain integral equations of the first kind. J ACM. 1962;9(1):84–97.

    Article  Google Scholar 

  21. Twomey S. Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions. J Comput Phys. 1975;18(2):188–200.

    Article  Google Scholar 

  22. Guschin V. Kombination von turbidimetrsichen Methodenmit Verfahren der multivariaten Datenanalyse zur Prozesscharakterisierung von Nanokompositen. doctor thesis Fakultät für Maschinenbau Karlsruher Institut für Technologie (KIT). 2016.

  23. Workman J, Weyer L. Practical guide and spectral atlas for interpretive near-infrared spectroscopy. 2nd ed. Boca Raton, FL: CRC Press; 2012.

    Book  Google Scholar 

  24. Alig I, Steinhoff B, Lellinger D. Monitoring of polymer melt processing. Meas Sci Technol. 2010;21(6):62001.

    Article  Google Scholar 

  25. Polyanskiy MN (2016) Refractive index database, http://refractiveindex.info

  26. Yovcheva T. Refractive index of corona-treated polypropylene films. J Optic Pure Appl Optic. 2008; 10:5.

  27. Kortüm G. Reflexionsspektroskopie. Grundlagen, Methodik, Anwendungen. Berlin, Heidelberg: Springer; 1969.

    Google Scholar 

  28. Steele HM, Turco RP. Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion. J Geophys Res. 1997;102(D14):16737–47.

    Article  CAS  Google Scholar 

  29. Kessler W. Multivariate Datenanalyse für die Pharma-Bio- und Prozessanalytik. Ein Lehrbuch. Weinheim: Wiley-VCH; 2006.

    Google Scholar 

  30. Kessler RW (ed) Prozessanalytik. Strategien und Fallbeispiele aus der industriellen Praxis. Weinheim: Wiley-VCH; 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Becker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Process Analytics in Science and Industry with guest editor Rudolf W. Kessler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, W., Guschin, V., Mikonsaari, I. et al. Turbidimetric method for the determination of particle sizes in polypropylene/clay-composites during extrusion. Anal Bioanal Chem 409, 741–751 (2017). https://doi.org/10.1007/s00216-016-0038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0038-3

Keywords

Navigation