Skip to main content
Log in

Strategy for non-target ionic analysis by capillary electrophoresis with ultraviolet detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A strategy for non-target analysis of samples with unknown composition by capillary electrophoresis (CE) with ultraviolet (UV) detection is suggested. The strategy is based on the preliminary identification of analytes and further optimization of the conditions for their separation using the developed computational tool set ElphoSeparation. It is shown that, in order to record electrophoretic peaks with the mobilities from the maximum to minimum possible values, the positive and negative voltage polarity and hydrodynamic pressure should be used. To choose the optimal separation conditions, dynamic maps of electrophoretic separation (DMES) are suggested. DMES is a bar chart with theoretical resolutions of adjacent peaks presented in ascending order of the migration time. The resolution is calculated as the division of the difference of the effective electrophoretic mobilities of adjacent analytes by their average peak width in terms of electrophoretic mobility. The suggested strategy is tested by the example of the analysis of herbal medicine (Holosas) on the basis of rose hips. The approach should be used to analyze samples with not very complex composition, such as environmental water and precipitation samples, process liquors, some vegetable extracts, biological fluids, food, and other samples for the determination of widespread compounds capable of forming ionic species. For samples with complex composition, the approach used together with other techniques may produce advantageous information due to specificity of the method, particularly it can be useful for determination of compounds suffering from low volatility or thermal stability, and for analysis of samples with difficult matrices.

The scheme of performing the non-target ionic analysis by capillary electrophoresis with ultraviolet detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klampfl CW. Determination of organic acids by CE and CEC methods. Electrophoresis. 2007;28:3362–78.

    Article  CAS  Google Scholar 

  2. Wang H, Liu Y, Wei S, Yao S, Zhang J, Huang H. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis. Anal Bioanal Chem. 2016;408:589–98.

    Article  CAS  Google Scholar 

  3. Sun H, Lau KM, Fung YS. A new capillary electrophoresis buffer for determining organic and inorganic anions in electroplating bath with surfactant additives. J Chromatogr A. 2010;1217:3244–50.

    Article  CAS  Google Scholar 

  4. Yassine MM, Dabek-Zlotorzynska E, Harir M, Schmitt-Kopplin P. Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultra-high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2012;84:6586–94.

    Article  CAS  Google Scholar 

  5. Kubrak T, Dresler S, Szymczak G, Bogucka-Kocka A. Rapid determination of coumarins in plants by capillary electrophoresis. Anal Lett. 2015;48:2819–32.

    Article  CAS  Google Scholar 

  6. Vaz FAS, da Silva PA, Passos LP, Heller M, Micke GA, Costa ACO, et al. Optimisation of a capillary zone electrophoresis methodology for simultaneous analysis of organic aliphatic acids in extracts of Brachiaria brizantha. Phytochem Anal. 2012;23:569–75.

    Article  CAS  Google Scholar 

  7. Danč L, Bodor R, Troška P, Horčičiak M, Masár M. Determination of metabolic organic acids in cerebrospinal fluid by microchip electrophoresis. Electrophoresis. 2014;35:2146–54.

    Google Scholar 

  8. Turkia H, Holmström S, Paasikallio T, Sirén H, Penttilä M, Pitkänen J-P. Online capillary electrophoresis for monitoring carboxylic acid production by yeast during bioreactor cultivations. Anal Chem. 2013;85:9705–12.

    Article  CAS  Google Scholar 

  9. Milman BL. General principles of identification by mass spectrometry. Trends Anal Chem. 2015;69:24–33.

    Article  CAS  Google Scholar 

  10. Magnuson ML, Satȥger RD, Alcaraȥ A, Brewer J, Fetterolf D, Harper M, et al. Guidelines for the identification of unknown samples for laboratories performing forensic analyses for chemical terrorism. J Forensic Sci. 2012;57:636–42.

    Article  Google Scholar 

  11. Milman BL. Identification of chemical compounds. Trends Anal Chem. 2005;24:493–508.

    Article  CAS  Google Scholar 

  12. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88:524–45.

    Article  CAS  Google Scholar 

  13. Barbas C, Moraes EP, Villaseñor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal. 2011;55:823–31.

    Article  CAS  Google Scholar 

  14. Forcisi S, Moritz F, Lucio M, Lehmann R, Stefan N, Schmitt-Kopplin P. Solutions for low and high accuracy mass spectrometric data matching: a data-driven annotation strategy in nontargeted metabolomics. Anal Chem. 2015;87:8917–24.

    Article  CAS  Google Scholar 

  15. Bussche JV, Marzorati M, Laukens D, Vanhaeck L. Validated high resolution mass spectrometry-based approach for metabolomic fingerprinting of the human gut phenotype. Anal Chem. 2015;87:10927–34.

    Article  Google Scholar 

  16. Riedl J, Esslinger S, Fauhl-Hassek C. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication. Anal Chim Acta. 2015;885:17–32.

    Article  CAS  Google Scholar 

  17. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–55.

    Article  CAS  Google Scholar 

  18. Jouyban A, Kenndler E. Theoretical and empirical approaches to express the mobility of small ions in capillary electrophoresis. Electrophoresis. 2006;27:992–1005.

    Article  CAS  Google Scholar 

  19. Popova OV, Sursyakova VV, Burmakina GV, Rubaylo AI. Determination of iron and copper ions in cognacs by capillary electrophoresis. J Anal Chem. 2015;70:198–202.

    Article  CAS  Google Scholar 

  20. Hudson JC, Golin M, Malcolm M, Whiting CF. Capillary zone electrophoresis in a comprehensive screen for drugs of forensic interest in whole blood: an update. Can Soc Forensic Sci J. 1998;31:1–29.

    Article  CAS  Google Scholar 

  21. Hudson JC, Golin M, Malcolm M. Capillary zone electrophoresis in a comprehensive screen for basic drugs in whole blood. Can Soc Forensic Sci J. 1995;28:137–52.

    Article  CAS  Google Scholar 

  22. Slivinsky GG, Hymer WC, Bauer J, Morrison DR. Cellular electrophoretic mobility data: a first approach to a database. Electrophoresis. 1997;18:1109–19.

    Article  CAS  Google Scholar 

  23. Reijenga J, Lee HK. Software and internet resources for capillary electrophoresis and micellar electrokinetic capillary chromatography. J Chromatogr A. 2001;916:25–30.

    Article  CAS  Google Scholar 

  24. Jaroš M, Včeláková K, Zusková I, Gaš B. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments. Electrophoresis. 2002;23:2667–77.

    Article  Google Scholar 

  25. Hanrahan G, Gomez FA. Chemometric methods in capillary electrophoresis. New Jersey: Wiley; 2010.

    Google Scholar 

  26. Hanrahan G, Montes R, Gomez FA. Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern applications. Anal Bioanal Chem. 2008;390:169–79.

    Article  CAS  Google Scholar 

  27. Landers JP, editor. Handbook of capillary and microchip electrophoresis and associated microtechniques. 3rd ed. New York: CRC Press; 2008.

    Google Scholar 

  28. Wätzig H, Degenhardt M, Kunkel A. Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications. Electrophoresis. 1998;19:2695–752.

    Article  Google Scholar 

  29. McGuffin VL, Tavares MFM. Computer-assisted optimization of separations in capillary zone electrophoresis. Anal Chem. 1997;69:152–64.

    Article  CAS  Google Scholar 

  30. Hammitzsch-Wiedemann M, Scriba GKE. Mathematical approach by a selectivity model for rationalization of ph- and selector concentration-dependent reversal of the enantiomer migration order in capillary electrophoresis. Anal Chem. 2009;81:8765–73.

    Article  CAS  Google Scholar 

  31. Harakuwe AH, Haddad PR. Control of separation selectivity in capillary zone electrophoresis of inorganic anions. J Chromatogr A. 1999;834:213–32.

    Article  CAS  Google Scholar 

  32. Weldon MK, Arrington CM, Runnels PL, Wheeler JF. Selectivity enhancement for free zone capillary electrophoresis using conventional ion-pairing agents as complexing additives. J Chromatogr A. 1997;758:293–302.

    Article  CAS  Google Scholar 

  33. Friedl W, Kenndler E. Limitations of the optimization of the resolution by the buffer pH in capillary zone electrophoresis. Fresenius J Anal Chem. 1994;348:576–82.

    Article  CAS  Google Scholar 

  34. Fonslow BR, Bowser MT. Optimizing band width and resolution in micro-free flow electrophoresis. Anal Chem. 2006;78:8236–44.

    Article  CAS  Google Scholar 

  35. Sursyakova VV, Rubaylo AI. New peak broadening parameter for the characterization of separation capability in capillary electrophoresis. J Sep Sci. 2015;38:690–6.

    Article  CAS  Google Scholar 

  36. Sursyakova VV, Kalyakin SN, Burmakina GV, Rubaylo AI. System peaks in capillary zone electrophoresis of anions with negative voltage polarity and counter-electroosmotic flow. Electrophoresis. 2011;32:210–7.

    Article  CAS  Google Scholar 

  37. Sursyakova VV, Kalyakin SN, Burmakina GV, Rubaylo AI. System peaks and optimization of anion separation in capillary electrophoresis with non-reversed electroosmotic flow. J Anal Chem. 2012;67:783–9.

    Article  CAS  Google Scholar 

  38. Onsager L, Fuoss RM. Irreversible processes in electrolytes. diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J Phys Chem. 1932;36:2689–778.

    Article  CAS  Google Scholar 

  39. Cao C-X. Comparison of the mobilities of salt ions obtained by the moving boundary method and two empirical equations in capillary electrophoresis. J Chromatogr A. 1997;771:374–8.

    Article  CAS  Google Scholar 

  40. Steinmann L, Mosher RA, Thormann W. Characterization and impact of the temporal behavior of the electroosmotic flow in capillary isoelectric focusing with electroosmotic flow displacement. J Chromatogr A. 1996;756:219–32.

    Article  Google Scholar 

  41. Kalyakin SN, Sursyakova VV, Burmakina GV, Rubailo AI. Hydrodynamic suppression of the electroosmotic flow in capillary electrophoresis with indirect spectrophotometric detection. J Anal Chem. 2009;64:398–403.

    Article  CAS  Google Scholar 

  42. Blanco-Heras GA, Turnes-Carou MI, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D, Fernández-Fernández E. Capillary electrophoretic method for the determination of inorganic and organic anions in real samples Strategies for improving repeatability and reproducibility. J Chromatogr A. 2007;1144:275–8.

    Article  CAS  Google Scholar 

  43. Gopal J, Abdelhamid HN, Hua P-Y, Wu H-F. Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B. 2013;1:2463–75.

    Article  CAS  Google Scholar 

  44. Chang P-L, Hsieh M-M, Chiu T-C. Recent advances in the determination of pesticides in environmental samples by capillary electrophoresis. Int J Environ Res Public Health. 2016;13:409.

    Article  Google Scholar 

  45. Donkor KK, Guo ZC, Soliman LC, Law YT, Risley JM, Schmidt KJ, et al. Determination of sulfate and chloride ions in highly saline oilfield water by capillary electrophoresis using bilayer-coated capillaries and indirect absorption detection. Int J Environ Anal Chem. 2015;95:175–86.

    Article  CAS  Google Scholar 

  46. Kruve A, Leito I, Herodes K. Combating matrix effects in LC/ESI/MS: the extrapolative dilution approach. Anal Chim Acta. 2009;651:75–80.

    Article  CAS  Google Scholar 

  47. Ojanperä I, Kolmonen M, Pelander A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem. 2012;403:1203–20.

    Article  Google Scholar 

  48. Holtkamp H, Grabmann G, Hartinger CG. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry. Electrophoresis. 2016;37:959–72.

    Article  CAS  Google Scholar 

  49. Rubiolo P, Casetta C, Cagliero C, Brevard H, Sgorbini B, Bicchi C. Populus nigra L. bud absolute: a case study for a strategy of analysis of natural complex substances. Anal Bioanal Chem. 2013;405:1223–35.

    Article  CAS  Google Scholar 

  50. Hurtado-Fernández E, Contreras-Gutiérrez PK, Cuadros-Rodríguez L, Carrasco-Pancorbo A, Fernández- Gutiérrez A. Merging a sensitive capillary electrophoresis–ultraviolet detection method with chemometric exploratory data analysis for the determination of phenolic acids and subsequent characterization of avocado fruit. Food Chem. 2013;141:3492–503.

    Article  Google Scholar 

  51. Acunha T, Simó C, Ibáñez C, Gallardo A, Cifuentes A. Anionic metabolite profiling by capillary electrophoresis–mass spectrometry using a noncovalent polymeric coating. Orange juice and wine as case studies. J Chromatogr A. 2016;1428:326–35.

    Article  CAS  Google Scholar 

  52. Marie A-L, Tran NT, Saller F, Abdou YM, Zeau P, Plantier J-L, et al. A capillary zone electrophoresis method to detect conformers and dimers of antithrombin in therapeutic preparations. Electrophoresis. 2016;37:1696–703.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was supported by Russian Foundation for Basic Research (project № 14-03-32028 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria V. Sursyakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sursyakova, V.V., Burmakina, G.V. & Rubaylo, A.I. Strategy for non-target ionic analysis by capillary electrophoresis with ultraviolet detection. Anal Bioanal Chem 409, 1067–1077 (2017). https://doi.org/10.1007/s00216-016-0025-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0025-8

Keywords

Navigation