Skip to main content
Log in

Optical sensing and biosensing based on non-spherical noble metal nanoparticles

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Non-spherical noble metal nanoparticles (NPs) have widely tunable localized surface plasmon resonance, very high extinction coefficient, and strongly facet-dependent adsorption/binding properties. A few non-spherical noble metal NPs have been employed as reporters and/or modulators for various optical sensing. This review summarizes recent progress in the study of design, performance, and application of colorimetric and fluorescent sensing/biosensing systems based on three kinds of non-spherical noble metal NPs with different dimension, namely, one- (or quasi-one) dimensional nanorods, two-dimensional nanoplates, and three-dimensional nanodendritics; furthermore, the future developments in this research area are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  2. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41(10):4067–4085

    Article  CAS  Google Scholar 

  3. Wu P, Hou X, Xu JJ, Chen HY (2014) Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev 114(21):11027–11059

    Article  CAS  Google Scholar 

  4. Vannoy CH, Tavares AJ, Noor MO, Uddayasankar U, Krull UJ (2011) Biosensing with quantum dots: a microfluidic approach. Sensors 11(12):9732–9763

    Article  CAS  Google Scholar 

  5. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, Imaging and drug delivery. Nano Res 2(2):85–120

    Article  CAS  Google Scholar 

  6. Wang J (2005) Carbon-nanotube-based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    Article  CAS  Google Scholar 

  7. Chang J, Zhou G, Christensen ER, Heideman R, Chen J (2014) Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 406(16):3957–3975

    Article  CAS  Google Scholar 

  8. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene-based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  CAS  Google Scholar 

  9. Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3(13):1746–1753

    Article  CAS  Google Scholar 

  10. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  CAS  Google Scholar 

  11. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107

    Article  CAS  Google Scholar 

  12. Li YC, Lin YS, Tsai PJ, Chen CT, Chen WY, Chen YC (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal Chem 79(19):7519–7525

    Article  CAS  Google Scholar 

  13. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  Google Scholar 

  14. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045

    Article  CAS  Google Scholar 

  15. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  16. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101(39):14036–14039

    Article  CAS  Google Scholar 

  17. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  18. Guo L, Jackman JA, Yang HH, Chen P, Cho NJ, Kim DH (2015) Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10(2):213–239

    Article  CAS  Google Scholar 

  19. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636

    Article  CAS  Google Scholar 

  20. Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115(19):10410–10488

    Article  CAS  Google Scholar 

  21. Xu L, Kuang H, Wang L, Xu C (2011) Gold nanorod ensembles as artificial molecules for applications in sensors. J Mater Chem 21(42):16759–16782

    Article  CAS  Google Scholar 

  22. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  CAS  Google Scholar 

  23. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  Google Scholar 

  24. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  CAS  Google Scholar 

  25. Yasun E, Kang H, Erdal H, Cansiz S, Ocsoy I, Huang YF, Tan W (2013) Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus 3:20130006

  26. Zhang J, Tang Y, Lee K, Ouyang M (2010) Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 406(7302):91–95

    Article  Google Scholar 

  27. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Article  CAS  Google Scholar 

  28. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825

    Article  CAS  Google Scholar 

  29. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994

    Article  CAS  Google Scholar 

  30. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco P, Alkilany A, Hankins PL, Kinard B (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557

    Article  Google Scholar 

  31. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58(1):3–7

    Article  CAS  Google Scholar 

  32. Xia Y, Ye J, Tan K, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism−glucose oxidase system. Anal Chem 85(13):6241–6247

    Article  CAS  Google Scholar 

  33. Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8(8):2526–2529

    Article  CAS  Google Scholar 

  34. Tan K, Yang G, Chen H, Shen P, Huang Y, Xia Y (2014) Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms. Biosens Bioelectron 59:227–232

    Article  CAS  Google Scholar 

  35. Jana NR, Pal T (2007) Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv Mater 19(13):1761–1765

    Article  CAS  Google Scholar 

  36. Aslan K, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382(4):926–933

    Article  CAS  Google Scholar 

  37. Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core−shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525

    Article  CAS  Google Scholar 

  38. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  39. Murray CB, Kagan CR (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30(1):545–610

    CAS  Google Scholar 

  40. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124(10):2305–2311

    Article  CAS  Google Scholar 

  41. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Article  CAS  Google Scholar 

  42. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325

    Article  CAS  Google Scholar 

  43. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  CAS  Google Scholar 

  44. Chen HY, Lin MH, Wang CY, Chang YM, Gwo S (2015) Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J Am Chem Soc. doi:10.1021/jacs.5b09111

    Google Scholar 

  45. Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtulus Ö, Lee SH, Lindquist NC, Oh SH, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567

    Article  Google Scholar 

  46. Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529

    Article  CAS  Google Scholar 

  47. Wu X, Ming T, Wang X, Wang P, Wang J, Chen J (2010) High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4(1):113–120

  48. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93(7):077402

    Article  Google Scholar 

  49. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Article  Google Scholar 

  50. Mie G (1908) Beiträgezur optiktrüber medien, speziellkolloidaler metallösungen. Ann Phys 330(3):377–445

    Article  Google Scholar 

  51. Gans R (1915) Form of ultramicroscopic particles of silver. Ann Phys 47:270–284

    Article  CAS  Google Scholar 

  52. Sudeep PK, Shibu Joseph ST, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127(18):6516–6517

    Article  CAS  Google Scholar 

  53. Zhang S, Kou X, Yang Z, Shi Q, Stucky GD, Sun L, Wang J, Yan C (2007) Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun (18):1816–1818

  54. Wang L, Zhu Y, Xu L, Chen W, Kuang H, Liu L, Agarwal A, Xu C, Kotov NA (2010) Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem Int Ed 49(32):5472–5475

    Article  CAS  Google Scholar 

  55. Wang Y, Li YF, Wang J, Sang Y, Huang CZ (2010) End-to-end assembly of gold nanorods by means of oligonucleotide–mercury(II) molecular recognition. Chem Commun 46(8):1332–1334

    Article  Google Scholar 

  56. Huang H, Qu C, Liu X, Huang S, Xu Z, Zhu Y, Chu PK (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Commun 47(24):6897–6899

    Article  CAS  Google Scholar 

  57. Wang J, Zhang P, Li CM, Li YF, Huang CZ (2014) A highly selective and colorimetric assay of lysine by molecular-driven gold nanorods assembly. Biosens Bioelectron 34(1):197–201

    Article  Google Scholar 

  58. Wang C, Chen Y, Wang T, Ma Z, Su Z (2007) Biorecognition-driven self-assembly of gold nanorods: a rapid and sensitive approach toward antibody sensing. Chem Mater 19(24):5809–5811

    Article  CAS  Google Scholar 

  59. Zhen SJ, Huang CZ, Wang J, Li YF (2009) End-to-end assembly of gold nanorods on the basis of aptamer-protein recognition. J Phys Chem C 113(52):21543–21547

    Article  CAS  Google Scholar 

  60. Lu L, Xia Y (2015) Enzymatic reaction-modulated gold nanorod end-to-end self-assembly for ultrahigh sensitively colorimetric sensing of cholinesterase and organophosphate pesticides in human blood. Anal Chem 87(16):8584–8591

    Article  CAS  Google Scholar 

  61. Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79(2):572–579

    Article  CAS  Google Scholar 

  62. Marinakos SM, Chen S, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 79(14):5278–5283

    Article  CAS  Google Scholar 

  63. Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, Chilkoti A (2008) Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 80(4):984–989

    Article  CAS  Google Scholar 

  64. Chen S, Zhao Q, Liu F, Huang H, Wang L, Yi S, Zeng Y, Chen Y (2013) Ultrasensitive determination of copper in complex biological media based on modulation of plasmonic properties of gold nanorods. Anal Chem 85(19):9142–9147

    Article  CAS  Google Scholar 

  65. Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78(2):445–451

    Article  CAS  Google Scholar 

  66. Liu X, Zhang S, Tan P, Zhou J, Huang Y, Nie Z, Yao S (2013) A plasmonic blood glucose monitor based on enzymatic etching of gold nanorods. Chem Commun 49(18):1856–1858

    Article  CAS  Google Scholar 

  67. Zhang Z, Chen Z, Pan D, Chen L (2015) Fenton-like reaction-mediated etching of gold nanorods for visual detection of Co2+. Langmuir 31(1):643–650

    Article  CAS  Google Scholar 

  68. Zhang Z, Chen Z, Chen L (2015) Ultrasensitive visual sensing of molybdate based on enzymatic-like etching of gold nanorods. Langmuir 31(33):9253–9259

    Article  CAS  Google Scholar 

  69. Chen Z, Zhang Z, Qu C, Pan D, Chen L (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137(22):5197–5200

    Article  CAS  Google Scholar 

  70. Agarwal A, Lilly GD, Govorov AO, Kotov NA (2008) Optical emission and energy transfer in nanoparticle−nanorod assemblies: potential energy pump system for negative refractive index materials. J Phys Chem C 112(47):18314–18320

    Article  CAS  Google Scholar 

  71. Liang GX, Pan HC, Li Y, Jiang LP, Zhang JR, Zhu JJ (2009) Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosens Bioelectron 24(12):3693–3697

    Article  CAS  Google Scholar 

  72. Xia Y, Song L, Zhu C (2011) Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)−(quantum dots) assembly. Anal Chem 83(4):1401–1407

    Article  CAS  Google Scholar 

  73. Wang S, Riahi R, Li N, Zhang DD, Wong PK (2015) Single cell nanobiosensors for dynamic gene expression profiling in native tissue microenvironments. Adv Mater. doi:10.1002/adma.201502814

    Google Scholar 

  74. Yuan F, Chen H, Xu J, Zhang Y, Wu Y, Wang L (2014) Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared up-converting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem Eur J 20(10):2888–2894

    Article  CAS  Google Scholar 

  75. Chen G, Jin Y, Wang L, Deng J, Zhang C (2011) Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chem Commun 47(46):12500–12502

    Article  CAS  Google Scholar 

  76. Wang L, Jin Y, Deng J, Chen G (2011) Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8-17 DNAzyme. Analyst 136(24):5169–5174

    Article  CAS  Google Scholar 

  77. Li X, Qian J, Jiang L, He S (2009) Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett 94(6):063111

    Article  Google Scholar 

  78. Zeng Q, Zhang Y, Liu X, Tu L, Kong X, Zhang H (2012) Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem Commun 48(12):1781–1783

    Article  CAS  Google Scholar 

  79. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903

    Article  CAS  Google Scholar 

  80. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 133(46):18931–18939

    Article  CAS  Google Scholar 

  81. Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q (2014) High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett 14(12):7201–7206

    Article  CAS  Google Scholar 

  82. Wu T, Li YF, Huang CZ (2009) Selectively colorimetric detection of cysteine with triangular silver nanoprisms. Chin Chem Lett 20(5):611–614

    Article  CAS  Google Scholar 

  83. Chen L, Fu X, Lu W, Chen L (2013) Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl Mater Interface 5(2):284–290

    Article  CAS  Google Scholar 

  84. Malile B, Chen JIL (2013) Morphology-based plasmonic nanoparticle sensors: controlling etching kinetics with target-responsive permeability gate. J Am Chem Soc 135(43):16042–16045

    Article  CAS  Google Scholar 

  85. Yang X, Yu Y, Gao Z (2014) A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano 8(5):4902–4907

    Article  CAS  Google Scholar 

  86. Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, Lan C, Cao D, Tang Y (2015) Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron 69:128–134

    Article  CAS  Google Scholar 

  87. Wang X, Li S, Zhang P, Lv F, Liu L, Li L, Wang S (2015) An optical nanoruler based on a conjugated polymer silver nanoprism pair for label-free protein detection. Adv Mater. doi:10.1002/adma.201502880

    Google Scholar 

  88. Chan YH, Chen J, Liu Q, Wark SE, Son DH, Batteas JD (2010) Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal Chem 82(9):3671–3678

    Article  CAS  Google Scholar 

  89. Rodríguez-Lorenzo L, Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11(7):604–607

    Article  Google Scholar 

  90. Chen H, Xia Y (2014) Compact hybrid (gold nanodendrite-quantum dots) assembly: plasmon enhanced fluorescence-based platform for small molecule sensing in solution. Anal Chem 86(22):11062–11069

    Article  CAS  Google Scholar 

  91. Halder A, Ravishankar N (2007) Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater 19(14):1854–1858

    Article  CAS  Google Scholar 

  92. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li ZY, Xia Y (2006) Facile synthesis of gold−silver nanocages with controllable pores on the surface. J Am Chem Soc 128(46):14776–14777

    Article  CAS  Google Scholar 

  93. Feng Y, He J, Wang H, Tay YY, Sun H, Zhu L, Chen H (2012) An unconventional role of ligand in continuously tuning of metal–metal interfacial strain. J Am Chem Soc 134(4):2004–2007

    Article  CAS  Google Scholar 

  94. Shi P, Liu Z, Dong K, Ju E, Ren J, Du Y, Li Z, Qu X (2014) A smart “sense-act-treat” system: combining a ratiometric pH sensor with a near infrared therapeutic gold nanocage. Adv Mater 26(38):6635–6641

    Article  CAS  Google Scholar 

  95. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194

    Article  CAS  Google Scholar 

  96. Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134(7):3322–3325

    Article  CAS  Google Scholar 

  97. Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84(9):4185–4191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (nos. 21275001 and 21422501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsheng Xia.

Ethics declarations

Conflict of interest

The author declares no conflict interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y. Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal Bioanal Chem 408, 2813–2825 (2016). https://doi.org/10.1007/s00216-015-9203-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9203-3

Keywords

Navigation