Skip to main content

Advertisement

Log in

Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann–Whitney’s U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm−1) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann–Whitney’s U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. AbdulMajeed AA, Farah CS (2013) Can immunohistochemistry serve as an alternative to subjective histopathological diagnosis of oral epithelial dysplasia? Biomark Cancer 5:49–60. doi:10.4137/BIC.S12951

    CAS  Google Scholar 

  2. van der Waal I (2009) Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol 45(4–5):317–323. doi:10.1016/j.oraloncology.2008.05.016

    Article  Google Scholar 

  3. Singh SP, Deshmukh A, Chaturvedi P, Murali Krishna C (2012) In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. J Biomed Opt 17(10):105002. doi:10.1117/1.jbo.17.10.105002

    CAS  Google Scholar 

  4. Kong K, Kendall C, Stone N, Notingher I Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. doi:10.1016/j.addr.2015.03.009

  5. Reibel J (2003) Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med 14(1):47–62

    Article  Google Scholar 

  6. Lee S, Kim K, Lee H, Jun CH, Chung H, Park JJ (2013) Improving the classification accuracy for IR spectroscopic diagnosis of stomach and colon malignancy using non-linear spectral feature extraction methods. Analyst 138(14):4076–4082. doi:10.1039/c3an00256j

    Article  CAS  Google Scholar 

  7. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137(14):3202–3215

    Article  CAS  Google Scholar 

  8. Trevisan J, Park J, Angelov PP, Ahmadzai AA, Gajjar K, Scott AD, Carmichael PL, Martin FL (2014) Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy. J Biophotonics 7(3–4):254–265. doi:10.1002/jbio.201300190

    Article  CAS  Google Scholar 

  9. Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ (2010) Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak 10(1):16

    Article  Google Scholar 

  10. Pallua JD, Pezzei C, Zelger B, Schaefer G, Bittner LK, Huck-Pezzei VA, Schoenbichler SA, Hahn H, Kloss-Brandstaetter A, Kloss F, Bonn GK, Huck CW (2012) Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma. Analyst 137(17):3965–3974. doi:10.1039/c2an35483g

    Article  CAS  Google Scholar 

  11. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791. doi:10.1038/nprot.2014.110, http://www.nature.com/nprot/journal/v9/n8/abs/nprot.2014.110.html#supplementary-information

    Article  CAS  Google Scholar 

  12. Anura A, Conjeti S, Das RK, Pal M, Paul RR, Bag S, Ray AK, Chatterjee J (2015) Computer-aided molecular pathology interpretation in exploring prospective markers for oral submucous fibrosis progression. Head Neck. doi:10.1002/hed.23962

    Google Scholar 

  13. Krishna CM, Sockalingum GD, Bhat RA, Venteo L, Kushtagi P, Pluot M, Manfait M (2007) FTIR and Raman microspectroscopy of normal, benign, and malignant formalin-fixed ovarian tissues. Anal Bioanal Chem 387(5):1649–1656. doi:10.1007/s00216-006-0827-1

    Article  CAS  Google Scholar 

  14. Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II, Llabjani V, Stringfellow HF, Martin-Hirsch PL, Dawson T, Martin FL (2012) Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods Adv Methods Appl 5:89–102. doi:10.1039/C2AY25544H

    Google Scholar 

  15. Trevisan J, Angelov PP, Scott AD, Carmichael PL, Martin FL (2013) IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. Bioinformatics (Oxford, England) 29(8):1095–1097. doi:10.1093/bioinformatics/btt084

    Article  CAS  Google Scholar 

  16. Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ (2015) Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: ‘Traps for new users’. PLoS One 10(2), e0116491. doi:10.1371/journal.pone.0116491

    Article  Google Scholar 

  17. Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179

    Article  CAS  Google Scholar 

  18. Fujioka N, Morimoto Y, Arai T, Kikuchi M (2004) Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy. Cancer Detect Prev 28(1):32–36. doi:10.1016/j.cdp.2003.11.004

    Article  Google Scholar 

  19. Bellisola G, Sorio C (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2(1):1–21

    CAS  Google Scholar 

  20. Fukuyama Y, Yoshida S, Yanagisawa S, Shimizu M (1999) A study on the differences between oral squamous cell carcinomas and normal oral mucosas measured by Fourier transform infrared spectroscopy. Biospectroscopy 5(2):117–126. doi:10.1002/(sici)1520-6343(1999)5:2<117::aid-bspy5>3.0.co;2-k

    Article  CAS  Google Scholar 

  21. Weisberger D, Fischer CJ (1960) Glycogen content of human normal buccal mucosa and buccal leukoplakia. Ann N Y Acad Sci 85(1):349–350

    Article  CAS  Google Scholar 

  22. Sun QJ, Xiong L, Bu XH, Liu Y (2012) Study on mechanism of cross-linking of peanut protein isolate modified with transglutaminase. Adv Mater Res 550:1304–1308

    Article  Google Scholar 

  23. Doyle JL, Manhold JH, Weisinger E (1968) Study of glycogen content and “basement membrane” in benign and malignant oral lesions. Oral Surg Oral Med Oral Pathol 26(5):667–673

    Article  CAS  Google Scholar 

  24. Steiner K (1955) A histochemical study of epidermal glycogen in skin diseases. J Invest Dermatol 24(6):599–618

    Article  CAS  Google Scholar 

  25. Goltz RW, Fusaro RM, Jarvis J (1958) Observations on glycogen in epithelial tumors1. J Invest Dermatol 31(6):331–341

    Article  CAS  Google Scholar 

  26. Schafer IA, Sorrell JM (1993) Human keratinocytes contain keratin filaments that are glycosylated with keratan sulfate. Exp Cell Res 207(2):213–219. doi:10.1006/excr.1993.1185

    Article  CAS  Google Scholar 

  27. Paul RR, Chatterjee J, Das AK, Cervera ML, de la Guardia M, Chaudhuri K (2002) Altered elemental profile as indicator of homeostatic imbalance in pathogenesis of oral submucous fibrosis. Biol Trace Elem Res 87(1–3):45–56

    CAS  Google Scholar 

  28. Allen AK, Ellis J, Rivett DE (1991) The presence of glycoproteins in the cell membrane complex of a variety of keratin fibres. Biochim Biophys Acta Gen Subj 1074(2):331–333. doi:10.1016/0304-4165(91)90172-D

    Article  CAS  Google Scholar 

  29. Kiernan JA (1999) Histological and histochemical methods: theory and practice. Shock 12(6):479

    Google Scholar 

  30. Yano K, Ohoshima S, Shimizu Y, Moriguchi T, Katayama H (1996) Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method. Cancer Lett 110(1–2):29–34

    Article  CAS  Google Scholar 

  31. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. doi:10.1096/fj.02-0752rev

    Article  CAS  Google Scholar 

  32. May Promote Z-DNA, Damage DNA (2006) Cancer Biol Ther 5(3):253. doi:10.4161/cbt.5.3.2593

    Google Scholar 

  33. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge financial finding from MHRD, Government of India, New Delhi (IIT/SRIC/SMST/IAN/2013-14/222). The authors also wish to thank Mr B. Mohan Rao for his help during data acquisition and the anonymous reviewers for their suggestions.

Conflict of interest

The authors declare no conflict of interest.

Statement on informed consent

We would like to state that the work was performed under ethical clearance of the institution ethical committee of GNIDSR, Kolkata (GNIDSR/IEC/15-1 dt. 05/01/2015) and informed consent was obtained from all the subjects (both normal and diseased) recruited in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Pal, M., Chakrabarty, J. et al. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer. Anal Bioanal Chem 407, 7935–7943 (2015). https://doi.org/10.1007/s00216-015-8960-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8960-3

Keywords

Navigation