Skip to main content
Log in

Chiral separation of d/l-aldoses by micellar electrokinetic chromatography using a chiral derivatization reagent and a phenylboronic acid complex

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method was developed for d/l-isomeric separation of aldopentoses and aldohexoses as their (S)-(+)-4-(N,N-dimethylaminosulfonyl)-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole derivatives using phenylboronate buffer containing sodium dodecyl sulfate as a background electrolyte. The combination of derivatization with a chiral labeling reagent and micellar electrokinetic chromatography with phenylboronate made possible the efficient separation of d/l isomers as well as epimeric isomers of aldopentoses and aldohexoses. Laser-induced fluorescence detection permitted the micromolar-level determination of monosaccharide derivatives. The limit of detection was 105 amol (300 nM), and the repeatabilities of the migration times and peak area responses were 0.8 % and 7.9 % (relative standard deviation; n = 6), respectively. The method was applied to the determination of d/l- galactose in red seaweed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giuffrida A, Maccarrone G, Cucinotta V, Orlandini S, Contino A (2014) Recent advances in chiral separation of amino acids using capillary electromigration techniques. J Chromatogr A 1363:41–50

    Article  CAS  Google Scholar 

  2. Aturki Z, D’Orazio G, Rocco A, Fanali S (2011) Advances in the enantioseparation of β-blocker drugs by capillary electromigration techniques. Electrophoresis 32:2602–2628

    Article  CAS  Google Scholar 

  3. Castro-Puyana M, Garcia-Canas V, Simo C, Cifuentes A (2012) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 33:147–167

    Article  CAS  Google Scholar 

  4. Amin NC, Blanchin M, Ake M, Fabre H (2012) Capillary electrophoresis methods for the analysis of antimalarials. Part I. Chiral separation methods. J Chromatogr A 1264:1–12

    Article  CAS  Google Scholar 

  5. Plotka JM, Biziuk M, Morrison C (2012) Common methods for the chiral determination of amphetamine and related compounds II. Capillary electrophoresis and nuclear magnetic resonance. Trends Anal Chem 31:23–37

    Article  CAS  Google Scholar 

  6. Schwaninger AE, Meyer MR, Maurer HH (2012) Chiral drug analysis using mass spectrometric detection relevant to research and practice in clinical and forensic toxicology. J Chromatogr A 1269:122–135

    Article  CAS  Google Scholar 

  7. Sánchez-Hernández L, Guijarro-Diez M, Marina ML, Crego AL (2014) New approaches in sensitive chiral CE. Electrophoresis 35:12–27

    Article  Google Scholar 

  8. Grassmann E, Kuo JE, Zare R (1985) Electrokinetic separation of chiral compounds. Science 230:813–814

    Article  Google Scholar 

  9. Fanali S (2009) Chiral separations by CE employing CDs. Electrophoresis 30:S203–S210

    Article  Google Scholar 

  10. Chankvetadze B (2009) Separation of enantiomers with charged chiral selectors in CE. Electrophoresis 30:S211–S221

    Article  Google Scholar 

  11. Kuhn R (1999) Enantiomeric separation by capillary electrophoresis using a crown ether as chiral selector. Electrophoresis 20:2605–2613

    Article  CAS  Google Scholar 

  12. Zhang H, Qi L, Mao L, Chen Y (2012) Chiral separation using capillary electromigration techniques based on ligand exchange principle. J Sep Sci 35:1236–1248

    Article  CAS  Google Scholar 

  13. Jáč P, Scriba GKE (2013) Recent advances in electrodriven enantioseparations. J Sep Sci 36:52–74

    Article  Google Scholar 

  14. Cheetham PSJ, Wooton AN (1993) Bioconversion of D-galactose into D-tagatose. Enzym Microb Technol 15:105–108

    Article  CAS  Google Scholar 

  15. Itoh H, Izumori K (1996) Enzymatic production of L-tagatose and L-fructose from L-sorbose and L-psicose respectively. J Ferment Bioeng 81:351–354

    Article  CAS  Google Scholar 

  16. Leang K, Sultana I, Takada G, Izumori K (2003) A novel bioconversion of L-fructose to L-glucose by Klebsiella pneumonia. J Biosci Bioeng 95:310–312

    Article  CAS  Google Scholar 

  17. Hasehira K, Miyanishi N, Sumiyoshi W, Hirabayashi J, Nakakita S (2011) Development of a chemical strategy to produce rare aldohexoses from ketohexoses using 2-aminopyridine. Carbohydr Res 346:2693–2698

    Article  CAS  Google Scholar 

  18. Matsuo T, Suzuki H, Hashiguchi M, Izumori K (2002) D-Psicose is a rare sugar that provides no energy to growing rats. J Nutr Sci Vitaminol 48:77–80

    Article  CAS  Google Scholar 

  19. Livesey G, Brown JC (1996) D-Tagatose is a bulk sweetener with zero energy determined in rats. J Nutr 126:1601–1609

    CAS  Google Scholar 

  20. Sui L, Dong Y, Watanabe Y, Yamaguchi F, Hatano N, Tsukamoto I, Izumori K, Tokuda M (2005) The inhibitory effect and possible mechanisms of D-allose on cancer cell proliferation. Int J Oncol 27:907–912

    CAS  Google Scholar 

  21. Bautista DA, Pegg RB, Shang PJ (2000) Effect of L-glucose and D-tagatose on bacterial growth in media and a cooked cured ham product. J Food Prot 63:71–77

    CAS  Google Scholar 

  22. Lawson CJ, Homewood J, Taylor AJ (2002) The effects of L-glucose on memory in mice are modulated by peripherally acting cholinergic drugs. Neurobiol Learn Mem 77:17–28

    Article  CAS  Google Scholar 

  23. Stefansson M, Novotny M (1993) Electrophoretic resolution of monosaccharide enantiomers in borate-oligosaccharide complexation media. J Am Chem Soc 115:11573–11580

    Article  CAS  Google Scholar 

  24. Kodama S, Aizawa S, Taga A, Yamashita T, Kemmei T, Yamamoto A, Hayakawa K (2007) Simultaneous chiral resolution of monosaccharides as 8-aminonaphthalene-1,3,6-trisulfonate derivatives by ligand-exchange CE using borate as a central ion of the chiral selector. Electrophoresis 28:3930–3933

    Article  CAS  Google Scholar 

  25. Kuo CY, Liao KS, Liu YC, Yang WB (2011) Bis-indole derivatives for polysaccharide compositional analysis and chiral resolution of D-, L-monosaccharides by ligand exchange capillary electrophoresis using borate-cyclodextrin as a chiral selector. Molecules 16:1682–1694

    Article  CAS  Google Scholar 

  26. Lopes JF, Gaspar EMSM (2008) Simultaneous chromatographic separation of enantiomers, anomers and structural isomers of some biologically relevant monosaccharides. J Chromatogr A 1188:34–42

    Article  CAS  Google Scholar 

  27. Toyooka T, Ishibashi M, Terao T (1992) Fluorescent chiral derivatization reagents for carboxylic acid enantiomers in high-performance liquid chromatography. Analyst 117:727–733

    Article  CAS  Google Scholar 

  28. Honda S, Suzuki S, Kakehi K (1981) Analysis of the monosaccharide compositions of total non-dialyzable urinary glycoconjugates by the dithioacetal method. J Chromatogr 226:341–350

    Article  CAS  Google Scholar 

  29. Hoffstetter-Kuhn S, Paulus A, Gassmann E, Widmer HM (1991) Influence of borate complexation on the electrophoretic behavior of carbohydrates in capillary electrophoresis. Anal Chem 63:1541–1547

    Article  CAS  Google Scholar 

  30. Ma R, Shi L (2014) Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 5:1503–1518

    Article  CAS  Google Scholar 

  31. Springsteen G, Wang B (2002) A detailed examination of boronic acid–diol complexation. Tetrahedron 58:5291–5300

    Article  CAS  Google Scholar 

  32. Yan J, Springsteen G, Deeter S, Wang B (2004) The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron 60:11205–11209

    Article  CAS  Google Scholar 

  33. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 46:2111–2116

    Article  CAS  Google Scholar 

  34. Gonçalves AG, Ducatti DRB, Duarte MER, Noseda MD (2002) Sulfated and pyruvylated disaccharide alditols obtained from a red seaweed galactan: ESIMS and NMR approaches. Carbohydr Res 337:2443–2453

    Article  Google Scholar 

  35. Errea MI, Matulewiczet MC (2003) Unusual structures in the polysaccharides from the red seaweed Pterocladiella capillacea (Gelidiaceae, Gelidiales). Carbohydr Res 338:943–953

    Article  CAS  Google Scholar 

  36. Marinho-Soriano E, Bourret E (2003) Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour Technol 90:329–333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and by the “Antiaging Center Project” for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology, 2013–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachio Yamamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Tamata, Y., Sejima, K. et al. Chiral separation of d/l-aldoses by micellar electrokinetic chromatography using a chiral derivatization reagent and a phenylboronic acid complex. Anal Bioanal Chem 407, 6201–6206 (2015). https://doi.org/10.1007/s00216-015-8802-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8802-3

Keywords

Navigation