Skip to main content
Log in

Forensic differentiation of Bacillus cereus spores grown using different culture media using Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Some microorganisms have been shown to retain a chemical signature indicative of the medium used for culturing. However, the repeatability of medium-specific chemical signatures has not been demonstrated from samples of microorganisms produced in the same batch or in different batches by the same sporulation protocol. Here, the variation in Raman spectra of bacterial endospores repeatedly prepared by the same procedure is compared to the variation between Raman spectra of spores prepared using different media. Bacillus cereus T strain (BcT) samples were correctly classified according to the medium used to induce sporulation for 100 % of spores grown in a controlled manner by the same scientist using Raman spectroscopy and multivariate data analysis. The proof-of-concept results from BcT spores produced in 12 different sporulation media showed correct classification by medium for 98 % of samples (with 100 % classification accuracy for all but one sporulation medium in this data set). Spectral differences were discerned between spores that had been freshly prepared or freeze-dried and spores that had been frozen; however, the differences did not impact the classification of the sporulation medium. Latent variables reduced the classification accuracy of BcT sporulated in G medium by different scientists using different media lots and stored for different periods of time and requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jackman J (2012) The microbe: the basics of structure, morphology, and physiology as they relate to microbial characterization and attribution. In: Cliff JB, Kreuzer HW, Ehrhardt CJ, Wunschel DS (eds) Chemical and physical signatures for microbial forensics. Springer, New York, pp 13–24

    Chapter  Google Scholar 

  2. Jarman KH, Kreuzer-Martin HW, Wunschel DS, Valentine NB, Cliff JB, Petersen CE, Colburn HA, Wahl KL (2008) Appl Environ Microbiol 74:3573–3582

    Article  CAS  Google Scholar 

  3. Kreuzer-Martin HW, Lott MJ, Dorigan J, Ehleringer JR (2003) Proc Natl Acad Sci U S A 100:815–819

    Article  CAS  Google Scholar 

  4. Rieck VT, Palumbo SA, Witter LD (1973) J Gen Microbiol 74:1–8

    Article  CAS  Google Scholar 

  5. Ehrhardt CJ, Chu V, Brown T, Simmons TL, Swan BK, Bannan J, Robertson JM (2010) Appl Environ Microbiol 76:1902–1912

    Article  CAS  Google Scholar 

  6. Wunschel DS, Colburn HA, Fox A, Fox KF, Harley WM, Wahl JH, Wahl KL (2008) J Microbiol Methods 74:57–63

    Article  CAS  Google Scholar 

  7. Whiteaker J, Fenselau C (2004) Agric Food Chem 53:3735–3742

    Article  Google Scholar 

  8. DeGelder J, Scheldeman P, Leus K, Heyndrickx M, Vandenabeele P, Moens L, DeVos P (2007) Anal Bioanal Chem 389:2143–2151

    Article  CAS  Google Scholar 

  9. DeGelder J, DeGussem K, Vandenabeele P, Vancanneyt M, DeVos P, Moens L (2007) Anal Chim Acta 603:167–175

    Article  CAS  Google Scholar 

  10. Hutsebaut D, Maquelin K, DeVos P, Vandenabeele P, Moens L, Puppels GJ (2004) Anal Chem 2004:6274–6281

    Article  Google Scholar 

  11. Choo-Smith L-P, Maquelin K, Vreeswijk T, Bruining HA, Puppels GJ, Thi NAN, Kirschner C, Naumann D, Ami D, Villa AM, Orsini F, Doglia SM, Lamfarraj H, Lamfarraj H, Sockalingum GD, Manfait M, Allouch P, Endtz HP (2001) Appl Environ Microbiol 67:1461–1469

    Article  CAS  Google Scholar 

  12. Stöckel S, Meisel S, Elschner M, Rösch P, Popp J (2012) Agnew Chem Int Ed 51:5339–5342

    Article  Google Scholar 

  13. Maquelin K, Kirschner C, Choo-Smith L-P, Van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) J Microbiol Meth 51:255–271

    Article  CAS  Google Scholar 

  14. Maquelin K, Choo-Smith L-P, Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ (2000) Anal Chem 72:12–19

    Article  CAS  Google Scholar 

  15. Helm D, Labischinski H, Schallehn G, Naumann D (1991) J Gen Microbiol 137:69–79

    Article  CAS  Google Scholar 

  16. Kümmerle M, Scherer S, Seiler H (1998) Appl Environ Microbiol 64:2207–2214

    Google Scholar 

  17. Stöckel S, Meisel S, Elschner M, Rösch P, Popp J (2012) Anal Chem 84:9873–9880

    Article  Google Scholar 

  18. Kelly JG, Trevisan J, Scott AD, Carmichael PL, Pollock HM, Martin-Hirsch PL, Martin FL (2011) J Proteome Res 10:1437–1448

    Article  CAS  Google Scholar 

  19. Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Analyst 137:3203–3215

    Article  Google Scholar 

  20. Ramette A (2007) FEMS Microbiol Ecol 62:142–160

    Article  CAS  Google Scholar 

  21. Church BD, Halvorson H, Halvorson HO (1954) J Bacteriol 68:393–399

    CAS  Google Scholar 

  22. Hashimoto T, Black SH, Gerhardt P (1960) Can J Microbiol 6:203–212

    Article  CAS  Google Scholar 

  23. Burke WF (1982) J Gen Microbiol 128:1591–1597

    CAS  Google Scholar 

  24. Mueller JH, Hinton J (1941) Proc Soc Exp Biol and Me 48:330–333

    Article  CAS  Google Scholar 

  25. Pisal S, Wawde G, Salvankar S, Lade S, Kadam S (2006) AAPS PharmSciTech 7:E1–E8

    Article  Google Scholar 

  26. Schaeffer P, Millet J, Aubert JP (1965) Proc Natl Acad Sci USA 54:704–711

    Article  CAS  Google Scholar 

  27. Morisaki S, Ota C, Matsuda K, Kaku N, Fujiwara H, Oda R, Ishibashi H, Kubo T, Kawata M (2013). J Biomed Opt 18:116011–116018

  28. So PTC, Yew EYS, Rowlands C (2013) Biophys J 105:2641–2654

    Article  CAS  Google Scholar 

  29. Standard Guide for Raman Shift Standards for Spectrometer Calibration (2007). ASTM Standard E1840. ASTM International, West Conshohocken, PA, 2000, DOI: 10.1520/E1840-96R07, http://www.astm.org/Standards/E1840.htm

  30. Cozzolino D, Vadell A, Ballesteros F, Galietta G, Barlocco N (2006) Anal Bioanal Chem 385:931–939

    Article  CAS  Google Scholar 

  31. Medina-Gutiérrez C, Luis-Quintanar J, Frausto-Reyes C, Sato-Berrú R (2005) Spectrochim Acta Part A 61:87–91

    Article  Google Scholar 

  32. Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, Chicester, UK

  33. Johnson DR, O’Higgins P, Moore WJ, McAndrew TJ (1989) Forensic Sci Int 41:41–53

    Article  CAS  Google Scholar 

  34. Snow CC, Hartman S, Giles E, Young FA (1979) J Forensic Sci 24:448–460

    CAS  Google Scholar 

  35. Kahraman M, Keseroğlu K, Çulha M (2011) Appl Spectrosc 65:500–506

    Article  CAS  Google Scholar 

  36. de Vries YP, Hornstra LM, de Vos WM, Abee T (2004) Appl Environ Microbiol 70:2514–2519

    Article  Google Scholar 

  37. Huang S, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li Y (2007) J Bacteriol 189:4681–4687

    Article  CAS  Google Scholar 

  38. Carmona P (1980) Spectrochim Acta Part A 36:705–712

    Article  Google Scholar 

  39. Nelson WH, Dasari R, Feld M, Sperry JF (2004) Appl Spectrosc 58:1408–1412

    Article  CAS  Google Scholar 

  40. DeGelder J, DeGussem K, Vandenabeele P, DeVos P, Moens L (2007) Anal Chim Acta 585:234–240

    Article  CAS  Google Scholar 

  41. Bassi D, Cappa F, Cocconcelli PS (2012) Water and cations flux during sporulation and germination. In: Abel-Santos E (ed) Bacterial spores: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  42. Bach ML, Gilvarg C (1966) J Biol Chem 241:4563–4566

    CAS  Google Scholar 

  43. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  44. Aronson AI (2012) The structure and composition of the outer layers of the bacterial spores. In: Abel-Santos E (ed) Bacterial spores: current research and applications. pp 57–71

  45. Dai D, Holder D, Raskin L, Xi C (2011). BMC Microbiol 11 (59)

  46. Madonna AJ, Basile F, Furlong E, Voorhees KJ (2001) Rapid Commun Mass Sp 15:1068–1074

    Article  CAS  Google Scholar 

  47. Shields MJ, Hahn KR, Janzen TW, Goji N, Thomas MC, Kingombe CB, Paquet C, Kell AJ, Amoako KK (2012) J Food Prot 75:1243–1248

    Article  Google Scholar 

  48. Whiteaker J, Karns J, Fenselau C, Purdue ML (2004) Foodborne Pathog Dis 1:185–194

    Article  CAS  Google Scholar 

  49. Gao W, Smith DW, Li Y (2007) Water Environ Res 79:507–513

    Article  CAS  Google Scholar 

  50. Wyatt LR, Waites WM (1975) J Gen Microbiol 89:337–344

    Article  CAS  Google Scholar 

  51. Harz M, Rösch P, Peschke P-D, Ronnenberger O, Burkhardt H, Popp J (2005) Analyst 130:1543–1550

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Jack Hietpas for independent statistical analysis and confirmation of the results presented here. We would also like to thank Jason Brewer (FBI Laboratory, Chemistry Unit) for providing assistance with the Raman instrument and Lindsay Lundberg for spore preparations. This research was supported in part by an appointment to the Visiting Scientist Program at the FBI Laboratory Division, administered by the Oak Ridge Institute of Science and Education, through an interagency agreement between the US Department of Energy and the FBI.

Disclaimer

This is publication number 14-11 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for information only, and inclusion does not imply endorsement by the FBI or the US Government. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the FBI or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Robertson.

Additional information

This article is dedicated to the memory of Diane Williams, who lost a valiant battle against ovarian cancer. Diane was a very effective mentor to many Visiting Scientist Fellows and always keen to share her expertise in chemometrics and spectroscopy and engage in both scientific and cultural discussions on numerous subjects. She will be missed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dettman, J.R., Goss, J.M., Ehrhardt, C.J. et al. Forensic differentiation of Bacillus cereus spores grown using different culture media using Raman spectroscopy. Anal Bioanal Chem 407, 4757–4766 (2015). https://doi.org/10.1007/s00216-015-8677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8677-3

Keywords

Navigation