Skip to main content
Log in

Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography–tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two magnetic solid-phase extraction methods (mSPE) were developed and compared for the extraction and preconcentration of polychlorinated biphenyls (PCBs) from water and soil leachates. Analyses were carried out by gas chromatography coupled to triple quadrupole mass spectrometry. The mSPE extraction parameters were optimised using Fe3O4 nanoparticles coated with palmitate or oleate. Differences were found between the developed mSPE methods depending on the magnetic nanoparticle coating. The extraction efficiency of both sorbents was studied by spiking soil leachates at three concentration levels (from 0.6 to 0.18 ng ml−1 and from 0.4 to 0.04 ng ml−1 using palmitate or oleate coated nanoparticles, respectively) and recoveries from 86 to 109 % were obtained. The developed method provided a preconcentration factor of 250. The detection limits were about 29 times lower with the oleate-coated nanoparticles. Although both mSPE procedures could be used for the extraction of PCBs from water and soil leachates, oleate-coated nanoparticles gave the best extractive conditions and lower quantifications limits. Finally, the mSPE using oleate-coated nanoparticles was applied to the analysis of PCBs in river waters and in soil leachates obtained from soil with different physico-chemical characteristics. The levels of PCBs present in the leachates depended on the soil sample. The present work demonstrates the applicability of both mSPE methods to the determination of PCBs in water and soil leachates, which is of interest for mobility and bioavailability studies of these compounds in soil.

Determination of PCBs by mSPE and GC–MS/MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grimalt JO, van Drooge BL (2006) Ecotox Environ Safe 63:61–67

    Article  CAS  Google Scholar 

  2. van Drooge BL, Grimalt JO, Camarero L, Catalan J, Stuchlik E, Torres Garcia CJ (2004) Environ Sci Technol 38:3525–3532

    Article  Google Scholar 

  3. Carrera G, Fernandez P, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2002) Environ Sci Technol 36:2581–2588

    Article  CAS  Google Scholar 

  4. Gómara B, Fernández MA, González MJ, Ramos L (2006) J Sep Sci 29:123–130

    Article  Google Scholar 

  5. Westbom R, Thörneby L, Zorita S, Mathiasson L, Björklund E (2004) J Chromatogr A 1033:1–8

    Article  CAS  Google Scholar 

  6. Font G, Mañes J, Moltó JC, Picó Y (1996) J Chromatogr A 733:449–471

    Article  CAS  Google Scholar 

  7. Lopez BN, Man YB, Zhao YG, Leung AOW, Yao J, Wong MH (2011) Arch Environ Contam Toxicol 61:101–114

    Article  CAS  Google Scholar 

  8. de Dios AS, Díaz-García ME (2010) Anal Chim Acta 666:1–22

    Article  Google Scholar 

  9. Xie LJ, Jiang RF, Zhu F, Liu H, Ouyang GF (2014) Anal Bioanal Chem 406:377–399

    Article  CAS  Google Scholar 

  10. Chen L, Wang T, Tong J (2011) Trends Anal Chem 30:1095–1108

    Article  CAS  Google Scholar 

  11. Cao X, Chen J, Ye X, Zhang F, Shen L, Mo W (2013) J Sep Sci 36:3579–3585

    Article  CAS  Google Scholar 

  12. Zeng S, Cao Y, Sang W, Li T, Gan N, Zheng L (2012) Int J Mol Sci 13:6382–6398

    Article  CAS  Google Scholar 

  13. Zeng S, Gan N, Weideman-Mera R, Cao Y, Li T, San W (2013) Chem Eng J 218:108–115

    Article  CAS  Google Scholar 

  14. Chen X, Ding N, Zang H, Yeung H, Zhao RS, Cheng C, Liu J, Chan TW (2013) J Chromatogr A 1304:241–245

    Article  CAS  Google Scholar 

  15. Karamani AA, Douvalis AP, Stalikas CD (2013) J Chromatogr A 1271:1–9

    Article  CAS  Google Scholar 

  16. Bi XH, Chu SG, Meng QY, Xu XB (2002) Agr Ecosyst Environ: 241–252

  17. Enell A, Reichenberg F, Warfvinge P, Ewald G (2004) Chemosphere 54:707–715

    Article  CAS  Google Scholar 

  18. MAPA (1994) Métodos oficiales de análisis. (Oficial Methods of Analyses). Vol III. Ministerio de Agricultura Pesca y Alimentación, Spain, p 205

    Google Scholar 

  19. Ballesteros-Gómez A, Rubio S (2009) Anal Chem 81:9012–9020

    Article  Google Scholar 

  20. Pérez RA, Albero B, Tadeo JL, Fraile MV, Sánchez-Brunete C (2014) Anal Methods 6:1941–1950

    Article  Google Scholar 

  21. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J (2013) Molecules 18:7533–7548

    Article  CAS  Google Scholar 

  22. Zhang L, He R, Gu HC (2006) Appl Surf Sci 253:2611–2617

    Article  CAS  Google Scholar 

  23. Cabrera LI (2008) PhD Thesis. Universidad de Guanajuato (México) and Universidad Autónoma de Madrid (Spain)

  24. Pérez RA, Albero B, Tadeo JL, Molero E, Sánchez-Brunete C (2014) Chromatographia 77:837–843

    Article  Google Scholar 

  25. Ozcan S (2011) J Sep Sci 34:575–584

    Article  Google Scholar 

  26. Ozcan S, Tor A, Aydin ME (2009) Anal Chim Acta 647:182–188

    Article  CAS  Google Scholar 

  27. Shi J-W, Zhao Y-G, Fu Z-J, Li J-G, Wang Y-F, Yang T-C (2012) Anal Sci 28:167–173

    Article  CAS  Google Scholar 

  28. Bizkarguenaga E, Ros O, Iparraguirre A, Navarro P, Vallejo A, Usobiaga A, Zuloaga O (2012) J Chromatogr A 1247:104–117

    Article  CAS  Google Scholar 

  29. Eissa FI, Mahmoud Hend A, Ghanem KM, Ahmed AB (2013) World Appl Sci J 27(6):694–700

    CAS  Google Scholar 

  30. Afful S, Awudza JAM, Osae S, Twumasi SK (2013) Am Chem Sci J 3:434–448

    Article  CAS  Google Scholar 

  31. Herbert P, Silva AL, João MJ, Santos L, Alves A (2006) Anal Bioanal Chem 386:324–331

    Article  CAS  Google Scholar 

  32. Badea S-L, Lundstedt S, Liljelind P, Tysklind M (2013) J Hazard Mater 254–255:26–35

    Article  Google Scholar 

  33. Ghosh U, Zimmerman JR, Luthy RG (2003) Environ Sci Technol 37:2209–2217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by the Ministry of Science and Innovation-National Institute for Agricultural and Food Research and Technology, INIA, Project number “RTA 2011-00047-00-00”.

The authors wish to express their gratefulness to Dr. M.P. Morales, researcher at the Department of Biomaterials and Bioinspired Materials, and to the Scientific Technical Services of Infrared Spectroscopy (ICMM; CSIC) for her help and advice in the characterisation of the MNPs and for the IR analysis, respectively. The authors also wish to thank the Soil Laboratory of IMIDRA for the soil characterisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo Sánchez-Brunete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, R.A., Albero, B., Tadeo, J.L. et al. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography–tandem mass spectrometry. Anal Bioanal Chem 407, 1913–1924 (2015). https://doi.org/10.1007/s00216-014-8409-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8409-0

Keywords

Navigation