Skip to main content

Advertisement

Log in

Micellar extraction possesses a new advantage for the analysis of Alzheimer’s disease brain proteome

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Integral membrane proteins (MPs), such as transporters, receptors, and ion channels, are of great interest because of their participation in various vital cellular functions including cell–cell interactions, ion transport, and signal transduction. However, studies of MPs are complicated because of their hydrophobic nature, heterogeneity, and low abundance. Cloud-point extraction (CPE) with the non-ionic surfactant Triton X-114 was performed to simultaneously extract and phase separate hydrophobic and hydrophilic proteins from Alzheimer’s disease (AD) and unaffected control brain tissue. Quantitative proteomics analysis of temporal neocortex samples of AD patients and controls was performed using a shotgun approach based on stable isotope dimethyl labeling (DML) quantification technique followed by nanoLC-MS/MS analysis. A total of 1096 unique proteins were identified and quantified, with 40.3 % (211/524) predicted as integral MPs with at least one transmembrane domain (TMD) found in the detergent phase, and 10 % (80/798) in the detergent-depleted phase. Among these, 62 proteins were shown to be significantly altered (p-value <0.05), in AD versus control samples. In the detergent fraction, we found 10 hydrophobic transmembrane proteins containing up to 14 putative TMDs that were significantly up- or down-regulated in AD compared with control brains. Changes in four of these proteins, alpha-enolase (ENOA), lysosome-associated membrane glycoprotein 1 (LAMP1), 14-3-3 protein gamma (1433G), and sarcoplasmic/endoplasmic reticulum calcium ATPase2 (AT2A2) were validated by immunoblotting. Our results emphasize that separating hydrophobic MPs in CPE contributes to an increased understanding of the underlying molecular mechanisms in AD. Such knowledge can become useful for the development of novel disease biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalache A, Gatti A (2003) Active ageing: a policy framework. Adv Gerontol 11:7–18

    CAS  Google Scholar 

  2. Van Duijn CM, Clayton DG, Chandra V, Fratiglioni AB, Graves A, Heyman AF, Jorm E, Kokmen K, Kondo JA, Mortimer W, Rocca A, Shalat SL, Soininen H, Hofman A, EURODEM Risk Factors Research Group (1994) Interaction between genetic and environmental risk factors for Alzheimer’s disease: a reanalysis of case–control studies. EURODEM Risk Factors Research Group. Genet Epidemiol 11(6):539–551

  3. Armstrong RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 47(4):289–299

    CAS  Google Scholar 

  4. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  Google Scholar 

  5. Wetterhall M, Shevchenko G, Artemenko K, Sjodin MO, Bergquist J (2011) Analysis of membrane and hydrophilic proteins simultaneously derived from the mouse brain using cloud-point extraction. Anal Bioanal Chem 400(9):2827–2836

    Article  CAS  Google Scholar 

  6. Shevchenko G, Sjodin MOD, Malmstrom D, Wetterhall M, Bergquist J (2010) Cloud-Point extraction and delipidation of porcine brain proteins in combination with bottom-up mass spectrometry approaches for proteome analysis. J Proteome Res 9(8):3903–3911

    Article  CAS  Google Scholar 

  7. Le Bihan T, Goh T, Stewart II, Salter AM, Bukhman YV, Dharsee M, Ewing R, Wisniewski JR (2006) Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J Proteome Res 5(10):2701–2710

    Article  Google Scholar 

  8. Blonder J, Goshe MB, Moore RJ, Pasa-Tolic L, Masselon CD, Lipton MS, Smith RD (2002) Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res 1(4):351–360

    Article  CAS  Google Scholar 

  9. Speers AE, Wu CC (2007) Proteomics of integral membrane proteins–theory and application. Chem Rev 107(8):3687–3714

    Article  CAS  Google Scholar 

  10. Cordwell SJ, Thingholm TE (2010) Technologies for plasma membrane proteomics. Proteomics 10(4):611–627

    Article  CAS  Google Scholar 

  11. Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7(16):3010–3029

    Article  CAS  Google Scholar 

  12. Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1–40) and (1–42) peptides. FASEB J 16(12):1526–1536

    Article  CAS  Google Scholar 

  13. Vercauteren FG, Bergeron JJ, Vandesande F, Arckens L, Quirion R (2004) Proteomic approaches in brain research and neuropharmacology. Eur J Pharmacol 500(1/3):385–398

    Article  CAS  Google Scholar 

  14. Hinze WL, Pramauro E (1993) A Critical-review of surfactant-mediated phase separations (cloud-point extractions)—theory and applications. Crit Rev Anal Chem 24(2):133–177

    Article  CAS  Google Scholar 

  15. Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38(11):4150–4168

    Article  CAS  Google Scholar 

  16. Mathias RA, Chen YS, Kapp EA, Greening DW, Mathivanan S, Simpson RJ (2011) Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins. Methods 54(4):396–406

    Article  CAS  Google Scholar 

  17. Shevchenko G, Wetterhall M, Bergquist J, Hoglund K, Andersson LI, Kultima K (2012) Longitudinal characterization of the brain proteomes for the tg2576 amyloid mouse model using shotgun based mass spectrometry. J Proteome Res 11(12):6159–6174

    CAS  Google Scholar 

  18. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494

    Article  CAS  Google Scholar 

  19. Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, Kultima K, Shevchenko G (2014) Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res 13(4):2056–2068

    Article  CAS  Google Scholar 

  20. Tolonen AC, Haas W (2014) Quantitative proteomics using reductive dimethylation for stable isotope labeling. J Visualized Exp JVE (89)

  21. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256(4):1604–1607

    CAS  Google Scholar 

  22. Mastro R, Hall M (1999) Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two-dimensional gel electrophoresis. Anal Biochem 273(2):313–315

    Article  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  24. Sjodin MO, Wetterhall M, Kultima K, Artemenko K (2013) Comparative study of label and label-free techniques using shotgun proteomics for relative protein quantification. J Chromatogr B Anal Technol Biomed Life Sci 928:83–92

    Article  Google Scholar 

  25. Sui P, Watanabe H, Ossipov MH, Porreca F, Bakalkin G, Bergquist J, Artemenko K (2013) Dimethyl-labeling-based protein quantification and pathway search: a novel method of spinal cord analysis applicable for neurological studies. J Proteome Res 12(5):2245–2252

    Article  CAS  Google Scholar 

  26. Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, Artemenko K (2014) Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteome 108:55–64

    Article  CAS  Google Scholar 

  27. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  Google Scholar 

  28. Wilkins MR, Gasteiger E, Sanchez JC, Bairoch A, Hochstrasser DF (1998) Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis 19(8/9):1501–1505

    Article  CAS  Google Scholar 

  29. Melen K, Krogh A, von Heijne G (2003) Reliability measures for membrane protein topology prediction algorithms. J Mol Biol 327(3):735–744

    Article  CAS  Google Scholar 

  30. Team RDC (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org. Accessed 14 Nov 2014

  31. Barrachina M, Maes T, Buesa C, Ferrer I (2006) Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer’s disease. Neuropathol Appl Neurobiol 32(5):505–516

    Article  CAS  Google Scholar 

  32. Hashimoto T, Ogino K, Shin RW, Kitamoto T, Kikuchi T, Shimizu N (2009) Age-dependent increase in lysosome-associated membrane protein 1 and early-onset behavioral deficits in APPSL transgenic mouse model of Alzheimer’s disease. Neurosci Lett 469(2):273–277

    Article  Google Scholar 

  33. Butterfield DA, Lange MLB (2009) Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem 111(4):915–933

    Article  CAS  Google Scholar 

  34. Butterfield DA, Sultana R (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12(1):61–72

    CAS  Google Scholar 

  35. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, Zivny J, Vulpe CD (2008) Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8(9):1744–1749

    Article  CAS  Google Scholar 

  36. Scholz B, Skold K, Kultima K, Fernandez C, Waldemarson S, Savitski MM, Soderquist M, Boren M, Stella R, Andren P, Zubarev R, James P (2011) Impact of temperature-dependent sampling procedures in proteomics and peptidomics—a characterization of the liver and pancreas post mortem degradome. Mol Cell Proteome 10(3)

  37. Kultima K, Skold K, Boren M (2011) Biomarkers of disease and post mortem changes—heat stabilization, a necessary tool for measurement of protein regulation. J Proteome 75(1):145–159

    Article  CAS  Google Scholar 

  38. Sultana R, Butterfield DA (2008) Alterations of some membrane transport proteins in Alzheimer’s disease: role of amyloid beta-peptide. Mol Biosyst 4(1):36–41

    Article  CAS  Google Scholar 

  39. Satoh K, Matsu-Ura T, Enomoto M, Nakamura H, Michikawa T, Mikoshiba K (2011) Highly cooperative dependence of sarco/endoplasmic reticulum calcium ATPase SERCA2a pump activity on cytosolic calcium in living cells. J Biol Chem 286(23):20591–20599

    Article  CAS  Google Scholar 

  40. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350

    Article  CAS  Google Scholar 

  41. Green KN, LaFerla FM (2008) Linking calcium to Abeta and Alzheimer’s disease. Neuron 59(2):190–194

    Article  CAS  Google Scholar 

  42. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4/5):325–337

    Article  CAS  Google Scholar 

  43. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463

    Article  CAS  Google Scholar 

  44. Woods NK, Padmanabhan J (2012) Neuronal calcium signaling and Alzheimer’s disease. In: Calcium signaling, vol 740. Advances in Experimental Medicine and Biology. Springer-Verlag, Berlin, pp 1193–1217

  45. Nensa FM, Neumann MHD, Schrotter A, Przyborski A, Mastalski T, Susdalzew S, Loosse C, Helling S, El Magraoui F, Erdmann R, Meyer HE, Uszkoreit J, Eisenacher M, Suh J, Guenette SY, Rohner N, Kogel D, Theiss C, Marcus K, Muller T (2014) Amyloid beta A4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain. Mol Cell Proteome 13(2):475–488

    Article  CAS  Google Scholar 

  46. Zhang H, Sun SY, Herreman A, De Strooper B, Bezprozvanny I (2010) Role of presenilins in neuronal calcium homeostasis. J Neurosci 30(25):8566–8580

    Article  CAS  Google Scholar 

  47. Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 181(7):1107–1116

    Article  CAS  Google Scholar 

  48. Jin HF, Sanjo N, Uchihara T, Watabe K, St George-Hyslop P, Fraser PE, Mizusawa H (2010) Presenilin-1 holoprotein is an interacting partner of sarco-endoplasmic reticulum calcium-ATPase and confers resistance to endoplasmic reticulum stress. J Alzheimers Dis 20(1):261–273

    CAS  Google Scholar 

  49. Lleo A (2008) Activity of gamma-secretase on substrates other than APP. Curr Top Med Chem 8(1):9–16

    Article  CAS  Google Scholar 

  50. Lee JC, Greig A, Ravindranathan A, Parks TN, Rao MS (1998) Molecular analysis of AMPA-specific receptors: subunit composition, editing, and calcium influx determination in small amounts of tissue. Brain Res Brain Res Protocol 3(2):142–154

    Article  CAS  Google Scholar 

  51. Armstrong DM, Ikonomovic MD, Sheffield R, Wenthold RJ (1994) AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res 639(2):207–216

    Article  CAS  Google Scholar 

  52. Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic central of motoneuronal excitability. Physiol Rev 80(2):767–852

    CAS  Google Scholar 

  53. Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56(1):127–129

    Article  CAS  Google Scholar 

  54. Parameshwaran K, Dhanasekaran M, Suppiramaniam V (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 210(1):7–13

    Article  CAS  Google Scholar 

  55. Shabala L, Howells C, West AK, Chung RS (2010) Prolonged Ab treatment leads to impairment in the ability of primary cortical neurons to maintain K+ and Ca2+ homeostasis. Mol Neurodegener 5(30):2–10

    Google Scholar 

  56. Muramatsu T, Miyauchi T (2003) Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 18(3):981–987

    CAS  Google Scholar 

  57. Naruhashi K, Kadomatsu K, Igakura T, Fan QW, Kuno N, Muramatsu H, Miyauchi T, Hasegawa T, Itoh A, Muramatsu T, Nabeshima T (1997) Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun 236(3):733–737

    Article  CAS  Google Scholar 

  58. Nabeshima K, Iwasaki H, Koga K, Hojo H, Suzumiya J, Kikuchi M (2006) Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol Int 56(7):359–367

    Article  CAS  Google Scholar 

  59. Winkler DA (2008) Network models in drug discovery and regenerative medicine. Biotechnol Annu Rev 14:143–170

    Article  CAS  Google Scholar 

  60. Nahalkova J, Volkmann I, Aoki M, Winblad B, Bogdanovic N, Tjernberg LO, Behbahani H (2010) CD147, a gamma-secretase associated protein is upregulated in Alzheimer’s disease brain and its cellular trafficking is affected by presenilin-2. Neurochem Int 56(1):67–76

    Article  CAS  Google Scholar 

  61. Zhou S, Zhou H, Walian PJ, Jap BK (2005) CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer’s disease amyloid beta-peptide production. Proc Natl Acad Sci U S A 102(21):7499–7504

    Article  CAS  Google Scholar 

  62. Vetrivel KS, Zhang X, Meckler X, Cheng H, Lee S, Gong P, Lopes KO, Chen Y, Iwata N, Yin KJ, Lee JM, Parent AT, Saido TC, Li YM, Sisodia SS, Thinakaran G (2008) Evidence that CD147 modulation of beta-amyloid (Abeta) levels is mediated by extracellular degradation of secreted Abeta. J Biol Chem 283(28):19489–19498

    Article  CAS  Google Scholar 

  63. Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci 16(24):7910–7919

    CAS  Google Scholar 

  64. Nalivaeva NN, Fisk LR, Belyaev ND, Turner AJ (2008) Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 5(2):212–224

    Article  CAS  Google Scholar 

  65. Kennedy BP, Ziegler MG, Alford M, Hansen LA, Thal LJ, Masliah E (2003) Early and persistent alterations in prefrontal cortex MAO A and B in Alzheimer’s disease. J Neural Transm 110(7):789–801

    CAS  Google Scholar 

  66. Sherif F, Gottfries CG, Alafuzoff I, Oreland L (1992) Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 4(3):227–240

    Article  CAS  Google Scholar 

  67. Zellner M, Baureder M, Rappold E, Bugert P, Kotzailias N, Babeluk R, Baumgartner R, Attems J, Gerner C, Jellinger K, Roth E, Oehler R, Umlauf E (2012) Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer’s disease but not in non-demented Parkinson's disease patients. J Proteomics 75(7):2080–2092

    Article  CAS  Google Scholar 

  68. Gulyas B, Pavlova E, Kasa P, Gulya K, Bakota L, Varszegi S, Keller E, Horvath MC, Nag S, Hermecz I, Magyar K, Halldin C (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68

    Article  CAS  Google Scholar 

  69. Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60(13/14):1527–1533

    Article  CAS  Google Scholar 

  70. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Loffler J, Richards JG (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62(1):15–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Uppsala Berzelii Technology Centre for Neurodiagnostics, with financing from the Swedish Governmental Agency for Innovation Systems and the Swedish Research Council P29797-1. B.C.R was awarded a U4 long-term research travel grant and thereby partially funded by the German Academic Exchange Service (DAAD). The authors acknowledge Dr. Levon Manukyan and Varun Maturi for technical assistance with Western blot analysis and Dr. Denys Shevchenko for technical assistance with Fig. 2.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna Shevchenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musunuri, S., Kultima, K., Richard, B.C. et al. Micellar extraction possesses a new advantage for the analysis of Alzheimer’s disease brain proteome. Anal Bioanal Chem 407, 1041–1057 (2015). https://doi.org/10.1007/s00216-014-8320-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8320-8

Keywords

Navigation