Skip to main content
Log in

In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The characterization of site-specific microheterogeneity in glycoprotein is very important for understanding cell biology and disease processes. Vitronectin is well known to be a multifunctional glycoprotein in the blood and the extracellular matrix, which is related to hepatocellular carcinoma (HCC). Here, we systematically analyzed the site-specific N-glycopeptides of vitronectin in human plasma by tandem mass spectrometry combined with immunoprecipitation and hydrophilic interaction liquid chromatography (HILIC) enrichment. Vitronectin was purified with immunoprecipitation by monoclonal antibody from plasma and digested to tryptic N-glycopeptides.Then, enrichment with HILIC materials was used and followed by analysis with nano-LC/MS/MS. The sequences of N-glycopeptides were identified from the mass spectra by high-energy C-trap dissociation (HCD) and collision-induced dissociation (CID). In HCD mode, oxonium ions were used for recognizing glycopeptides and y ions for sequencing the peptide backbone. In CID mode, Y ions were used for characterizing their glycoforms. As a result, a total of 17 site-specific N-glycopeptides were completely identified in all of the three N-glycosylation sites of vitronectin in human plasma, including 12 N-glycopeptides first reported. Finally, we specifically found that three hybrid and four complex glycopeptides of triantennary forms with outer fucosylation increased in HCC human plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

Fuc:

Fucose

Gal:

Galactose

GlcNAc:

N-acetylglycosamine

HCC:

Hepatocellular carcinoma

HCD:

High-energy C-trap dissociation

HILIC:

Hydrophilic interaction liquid chromatography

IP:

Immunoprecipitation

Man:

Mannose

N:

Asparagine

Neu5Ac:

N-acetyl neuraminic acid

NGSL~:

NGSLFAFR

NISD~:

NISDGFDGIPDNVDAALALPAHSYSGR

NNAT~:

NNATVHEQVGGPSLTSDLQAQSK

References

  1. Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    Article  CAS  Google Scholar 

  2. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  Google Scholar 

  3. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  Google Scholar 

  4. An HJ, Peavy TR, Hedrick JL, Lebrilla CB (2003) Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637

    Article  CAS  Google Scholar 

  5. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    Article  CAS  Google Scholar 

  6. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  Google Scholar 

  7. Neue K, Mormann M, Peter-Katalinić J, Pohlentz G (2011) Elucidation of glycoprotein structures by unspecific proteolysis and direct nano ESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J Proteome Res 10:2248–2260

    Article  CAS  Google Scholar 

  8. Pan S, Chen R, Aebersold R, Brentnall TA (2011) Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics 10:R110.003251

    Article  Google Scholar 

  9. Alley WR Jr, Novotny MV (2010) Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins. J Proteome Res 9:3062–3072

    Article  CAS  Google Scholar 

  10. Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291:2351–2356

    Article  CAS  Google Scholar 

  11. Peterman SM, Mulholland JJ (2006) A novel approach for identification and characterization of glycoproteins using a hybrid linear ion trap/FT-ICR mass spectrometer. J Am Soc Mass Spectrom 17:168–179

    Article  CAS  Google Scholar 

  12. Ahn YH, Shin PM, Ji ES, Kim H, Yoo JS (2012) A lectin-coupled, multiple reaction monitoring based quantitative analysis of human plasma glycoproteins by mass spectrometry. Anal Bioanal Chem 402:2101–2112

    Article  CAS  Google Scholar 

  13. Ahn YH, Ji ES, Shin PM, Kim KH, Kim YS, Ko JH, Yoo JS (2012) A multiplex lectin-channel monitoring method for human serum glycoproteins by quantitative mass spectrometry. Analyst 137:691–703

    Article  CAS  Google Scholar 

  14. Matsuda A, Kuno A, Matsuzaki H, Kawamoto T, Shikanai T, Nakanuma Y, Yamamoto M, Ohkohchi N, Ikehara Y, Shoda J, Hirabayashi J, Narimatsu H (2013) Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma. J Proteomics 85:1–11

    Article  CAS  Google Scholar 

  15. Ferreira JA, Daniel-da-Silva AL, Alves RMP, Duarte D, Vieira I, Santos LL, Ritorino R, Amado F (2011) Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids. Anal Chem 83:7035–7043

    Article  CAS  Google Scholar 

  16. Ahn YH, Kim YS, Ji ES, Lee JY, Jung JA, Ko JH, Yoo JS (2010) Comparative quantitation of aberrant glycoforms by lectin-based glycoprotein enrichment coupled with multiple-reaction monitoring mass spectrometry. Anal Chem 82:4441–4447

    Article  CAS  Google Scholar 

  17. Ito S, Hayama K, Hirabayashi J (2009) Enrichment strategies for glycopeptides. Methods Mol Biol 534:195–203

    CAS  Google Scholar 

  18. Zielinska DF, Gnad F, Wiśniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    Article  CAS  Google Scholar 

  19. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  Google Scholar 

  20. Chen R, Tan Y, Wang M, Wang F, Yao Z, Dong L, Ye M, Wang H, Zou H (2011) Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma. Mol Cell Proteomics 10:M110.006445

    Article  Google Scholar 

  21. Wuhrer M, de Boer AR, Deelder AM (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28:192–206

    Article  CAS  Google Scholar 

  22. Mysling S, Palmisano G, Højrup P, Thaysen-Andersen M (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82:5598–5609

    Article  CAS  Google Scholar 

  23. Qu Y, Xia S, Yuan H, Wu Q, Li M, Zou L, Zhang L, Liang Z, Zhang Y (2011) Integrated sample pretreatment system for N-linked glycosylation site profiling with combination of hydrophilic interaction chromatography and PNGase F immobilized enzymatic reactor via a strong cation exchange precolumn. Anal Chem 83:7457–7463

    Article  CAS  Google Scholar 

  24. Ding W, Hill JJ, Kelly J (2007) Selective enrichment of glycopeptides from glycoprotein digests using ion-pairing normal-phase liquid chromatography. Anal Chem 79:8891–8899

    Article  CAS  Google Scholar 

  25. Reusch D, Haberger M, Selman MHJ, Bulau P, Deelder AM, Wuhrer M, Engler N (2013) High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem 432:82–89

    Article  CAS  Google Scholar 

  26. Kim JY, Lee SY, Kim SK, Park SR, Kang D, Moon MH (2013) Development of an online microbore hollow fiber enzyme reactor coupled with nanoflow liquid chromatography-tandem mass spectrometry for global proteomics. Anal Chem 85:5506–5513

    Article  CAS  Google Scholar 

  27. Wuhrer M, Stam JC, van de Geijn FE, Koeleman CAM, Verrips CT, Dolhain RJEM, Hokke CH, Deelder AM (2007) Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7:4070–4081

    Article  CAS  Google Scholar 

  28. Pompach P, Brnakova Z, Sanda M, Wu J, Edwards N, Goldman R (2013) Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma. Mol Cell Proteomics 12:1281–1293

    Article  CAS  Google Scholar 

  29. Schvartz I, Seger D, Shaltiel S (1999) Vitronectin. Int J Biochem Cell Biol 31:539–544

    Article  CAS  Google Scholar 

  30. Preissner KT, Seiffert D (1998) Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res 89:1–21

    Article  CAS  Google Scholar 

  31. Preissner KT (1991) Structure and biological role of vitronectin. Annu Rev Cell Biol 7:275–310

    Article  CAS  Google Scholar 

  32. Ogawa H, Yoneda A, Seno N, Hayashi M, Ishizuka I, Hase S, Matsumoto I (1995) Structures of the N-linked oligosaccharides on human plasma vitronectin. Eur J Biochem 230:994–1000

    Article  CAS  Google Scholar 

  33. Sano K, Asanuma-Date K, Arisaka F, Hattori S, Ogawa H (2007) Changes in glycosylation of vitronectin modulate multimerization and collagen binding during liver regeneration. Glycobiology 17:784–794

    Article  CAS  Google Scholar 

  34. Lee JY, Kim JY, Park GW, Cheon MH, Kwon KH, Ahn YH, Moon MH, Lee HJ, Paik YK, Yoo JS (2011) Targeted mass spectrometric approach for biomarker discovery and validation with nonglycosylated tryptic peptides from N-linked glycoproteins in human plasma. Mol Cell Proteomics 10:M111.009290

    Article  Google Scholar 

  35. Lee JY, Kim JY, Cheon MH, Park GW, Ahn YH, Moon MH, Yoo JS (2014) MRM validation of targeted nonglycosylated peptides from N-glycoprotein biomarkers using direct trypsin digestion of undepleted human plasma. J Proteomics 98:206–217

    Article  CAS  Google Scholar 

  36. Hua S, Hu CY, Kim BJ, Totten SM, Oh MJ, Yun N, Nwosu CC, Yoo JS, Lebrilla CB, An HJ (2013) Glyco-analytical multispecific proteolysis (Glyco-AMP): a simple method for detailed and quantitative glycoproteomic characterization. J Proteome Res 12:4414–4423

    Article  CAS  Google Scholar 

  37. Lee HJ, Na K, Choi EY, Kim MS, Kim H, Paik YK (2010) Simple method for quantitative analysis of N-linked glycoproteins in hepatocellular carcinoma specimens. J Proteome Res 9:308–318

    Article  CAS  Google Scholar 

  38. Song E, Pyreddy S, Mechref Y (2012) Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 26:1941–1954

    Article  CAS  Google Scholar 

  39. Lee HJ, Cha HJ, Lim JS, Lee SH, Song SY, Kim H, Hancock WS, Yoo JS, Paik YK (2014) Abundance ratio-based semiquantitative analysis of site-specific N-linked glycopeptides present in the plasma of hepatocellular carcinoma patients. J Proteome Res 13(5):2328–2338

    Article  CAS  Google Scholar 

  40. Mayampurath AM, Yu CY, Song E, Balan J, Mechref Y, Tang H (2014) Computational framework for identification of intact glycopeptides in complex samples. Anal Chem 86:453–463

    Article  CAS  Google Scholar 

  41. Kim YJ, Zaidi-Ainouch Z, Gallien S, Domon B (2012) Mass spectrometry-based detection and quantification of plasma glycoproteins using selective reaction monitoring. Nat Protoc 7:859–871

    Article  CAS  Google Scholar 

  42. Lim BL, Reid KB, Ghebrehiwet B, Peerschke EI, Leigh LA, Preissner KT (1996) The binding protein for globular heads of complement C1q, gC1qR. Functional expression and characterization as a novel vitronectin binding factor. J Biol Chem 271:26739–26744

    Article  CAS  Google Scholar 

  43. Chen R, Seebun D, Ye M, Zou H, Figeys D (2014) Site-specific characterization of cell membrane N-glycosylation with integrated hydrophilic interaction chromatography solid phase extraction and LC-MS/MS. J Proteomics 30:194–203

    Article  CAS  Google Scholar 

  44. Segu ZM, Mechref Y (2010) Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun Mass Spectrom 24:1217–1225

    Article  CAS  Google Scholar 

  45. Seiffert D, Loskutoff DJ (1991) Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. J Biol Chem 266:2824–2830

    CAS  Google Scholar 

  46. Huang G, Xiong Z, Qin H, Zhu J, Sun Z, Zhang Y, Peng X, Zou J, Zou H (2014) Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Anal Chim Acta 809:61–68

    Article  CAS  Google Scholar 

  47. Coligan JE, Dunn BM, Speicher DW, Wingfield PT (eds) (2001) Current protocols in protein science. Wiley, Hoboken

    Google Scholar 

  48. Shah B, Jiang XG, Chen L, Zhang Z (2014) LC-MS/MS peptide mapping with automated data processing for routine profiling of N-glycans in immunoglobulins. J Am Soc Mass Spectrom 25:999–1011

    Article  CAS  Google Scholar 

  49. Mayampurath AM, Wu Y, Segu ZM, Mechref Y, Tang H (2011) Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun Mass Spectrom 25:2007–2019

    Article  CAS  Google Scholar 

  50. Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, Packer NH, Cordwell SJ (2013) Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res 12:5791–5800

    Article  CAS  Google Scholar 

  51. Kronewitter SR, An HJ, de Leoz ML, Lebrilla CB, Miyamoto S, Leiserowitz GS (2009) The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics 9:2986–2994

    Article  CAS  Google Scholar 

  52. Cao Q, Zhao X, Zhao Q, Lv X, Ma C, Zhao Y, Peng B, Ying W, Qian X (2014) Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry. Anal Chem 86:6804–6811

    Article  CAS  Google Scholar 

  53. Chen R, Wang F, Tan Y, Sun Z, Song C, Ye M, Wang H, Zou H (2012) Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation. J Proteomics 75:1666–1674

    Article  CAS  Google Scholar 

  54. Zhu J, Sun Z, Cheng K, Chen R, Ye M, Xu B, Sun D, Wang L, Liu J, Wang F, Zou H (2014) Comprehensive mapping of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry. J Proteome Res 13:1713–1721

    Article  CAS  Google Scholar 

  55. Wuhrer M, Koeleman CAM, Hokke CH, Deelder CM (2006) Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom 20:1747–1754

    Article  CAS  Google Scholar 

  56. Cheng L, Luo S, Jin C, Ma H, Zhou H, Jia L (2013) FUT family mediates the multidrug resistance of human hepatocellular carcinoma via the PI3K/Akt signaling pathway. Cell Death Dis 4:e923. doi:10.1038/cddis.2013.450

    Article  CAS  Google Scholar 

  57. Kang X, Wang N, Pei C, Sun L, Sun R, Chen J, Liu Y (2012) Glycan-related gene expression signatures in human metastatic hepatocellular carcinoma cells. Exp Ther Med 3:415–422

    CAS  Google Scholar 

  58. Nakagawa T, Uozumi N, Nakano M, Mizuno-Horikawa Y, Okuyama N, Taguchi T, Gu J, Kondo A, Taniguchi N, Miyoshi E (2006) Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts. J Biol Chem 281:29797–29806

    Article  CAS  Google Scholar 

  59. Shah N, Kuntz DA, Rose DR (2008) Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci U S A 105:9570–9575

    Article  CAS  Google Scholar 

  60. Mayampurath AM, Song E, Mathur A, Yu C, Hammoud ZT, Mechref Y, Tang H (2014) Label-free glycopeptide quantification for biomarker discovery in human sera. J Proteome Res 13. doi: 10.1021/pr500242m

  61. Zhu Z, Hua D, Clark DF, Go EP, Desaire H (2013) GlycoPep detector: a tool for assigning mass spectrometry data of N-linked glycopeptides on the basis of their electron transfer dissociation spectra. Anal Chem 85:5023–5032

    Article  CAS  Google Scholar 

  62. Wei T, Liu Q, He F, Zhu W, Hu L, Guo L, Zhang J (2012) The role of N-acetylglucosaminyltransferases V in the malignancy of human hepatocellular carcinoma. Exp Mol Path 93(1):8–17

    Article  CAS  Google Scholar 

  63. Yanagi M, Aoyagi Y, Suda T, Mita Y, Asakura H (2001) N-acetylglucosaminyltransferase V as a possible aid for the evaluation of tumor invasiveness in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 16(11):1282–1289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C2098); the research program through the Korea Basic Science Institute (grant number: D34413, T34750); and the Proteogenomic Research Program, through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013M3A9B9044431).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Young Kim or Jong Shin Yoo.

Additional information

Heeyoun Hwang and Ju Yeon Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, H., Lee, J.Y., Lee, H.K. et al. In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation. Anal Bioanal Chem 406, 7999–8011 (2014). https://doi.org/10.1007/s00216-014-8226-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8226-5

Keywords

Navigation