Skip to main content

Advertisement

Log in

Direct detection of chloramphenicol in honey by neutral desorption-extractive electrospray ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, we constructed a platform of neutral desorption-extractive electrospray ionization mass spectrometry (ND-EESI-MS) for direct and rapid detection of chloramphenicol (CAP) in honey samples diluted with methanol. Under the optimized working conditions, the quantitative information of CAP residues was acquired effectively by EESI-Ion Trap MSn. Using heated methanol-N2 as spray reagent, we reduced the limit of determination (LOD) from 73.3 ng/mL to 0.3 ng/mL, and the CAP detection is linear in the range of 1–5000 ng/mL (R = 0.9947). For the honey samples with CAP of 10, 100, and 1000 ng/mL, the recoveries were 133.0, 80.6, and 101.1 %, and the relative standard deviations were 5.96, 8.82, and 8.71 %, respectively. The reproducibility assays showed the stability of this method. Therefore, this ND-EESI-MS method is powerful for direct, rapid, and quantitative CAP analysis in honey samples with high sensitivity, precision, and specificity.

In the current neutral desorption-extractive electrospray ionization mass spectrometry (ND-EESI-MS) method, N2 is inlet into samples to desorb chloramphenicol (CAP). We tried to use some organic solvents as the spray reagent to dissolve CAP, and then the best neutral desorption efficiency was obtained when using methanol. We applied this modified ND-EESI-MS method to detect CAP in honey samples only with sample dilution. The limit of CAP detection was then reduced from 73.3 to 0.3 ng/mL, reaching the current EU standard. Therefore, this is a powerful method for direct, rapid, and quantitative CAP analysis in honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang JK (2008) The present conditions and existing problems in China’s exports of bee products. Agric Econ (Chin) 4:33–34

    CAS  Google Scholar 

  2. Yunis AA (1973) Chloramphenicol-induced bone marrow suppression. Semin Hematol 10(3):225–234

    CAS  Google Scholar 

  3. Allen EH (1985) Review of chromatographic methods for chloramphenicol residues in milk, eggs, and tissues from food-producing animals. J Assoc Off Anal Chem 68(5):990–999

    CAS  Google Scholar 

  4. Payne MA, Baynes RE, Sundolf SF, Craigmill A, Webb AI, Rivier JE (1999) Drugs prohibited from extralabel use in food animals. J Am Vet Med Assoc 215(1):28–32

    CAS  Google Scholar 

  5. (1994) Commission Regulation 1430/94 of 22 June 1994, Off J Eur Commun L 156: 6

  6. Mutinelli F (2003) Practical application of antibacterial drugs for the control of honey bee diseases. Apiacta 38:149–155

    Google Scholar 

  7. (2002) Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/ECD concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun L 221:8–36

  8. Fedorova MD, Andreeva IP, Vilegzhanina ES, Komarov AA, Rubtsova MY, Samsonova JV, Egorov AM (2010) Enzyme-linked immunosorbent assay of chlorampenicol in foodstuff. Appl Biochem Microbiol 46(8):795–801

    Article  CAS  Google Scholar 

  9. Scortichini G, Annunziata L, Haouet MN, Benedetti F, Krusteva I, Galarini R (2005) ELISA qualitative screening of chloramphenicol in muscle, eggs, honey and milk: method validation according to the Commission Decision 2002/657/EC criteria. Anal Chim Acta 535(1–2):43–48

    Article  CAS  Google Scholar 

  10. Wang L, Zhang Y, Gao X, Duan ZJ, Wang S (2010) Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system. J Agric Food Chem 58(6):3265–3270

    Article  CAS  Google Scholar 

  11. Yang CD, Song LH, Mao LH, Liu MX (2004) Analytical method for the determination of chloramphenicol residues in shrimps. Chin J Anal Chem 32(7):905–907

    CAS  Google Scholar 

  12. Zhan CR, Guo P, Chen ZG, Wang YX, Hu ZG (2008) Determination of thiamphenicol and florfenicol residues in aquatic products by ultra performance liquid chromatography. Chin J Anal Chem 36(4):525–528

    CAS  Google Scholar 

  13. Santos L, Barbosa J, Castilho MC, Ramos F, Ribeiro CAF, da Silveira MIN (2005) Determination of chloramphenicol residues in rainbow trouts by gas chromatography–mass spectometry and liquid chromatography–tandem mass spectrometry. Anal Chim Acta 529:249–256

    Article  CAS  Google Scholar 

  14. Impens S, Reybroeck W, Vercammen J, Courtheyn D, Ooghe S, de Wasch K, Smedts W, de Brabander H (2003) Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC-MS2 and LC-MS2. Anal Chim Acta 483(1–2):153–163

    Article  CAS  Google Scholar 

  15. Vivekanandan K, Swamy MG, Prasad S, Mukherjee R (2005) A simple method of isolation of chloramphenicol in honey and its estimation by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrum 19(21):3025–3030

    Article  CAS  Google Scholar 

  16. Kaufmann A, Butcher P (2005) Quantitative liquid chromatography/tandem mass spectrometry determination of chloramphenicol residues in food using sub-2 μm particulate high-performance liquid chromatography columns for sensitivity and speed. Rapid Commun Mass Spectrum 19(24):3694–3700

    Article  CAS  Google Scholar 

  17. Xie W, Ding HY, Zhang XD, Zheng ZQ, Xi JY, Yu CY (2005) Determination of chloramphenicol residue in honey and royal jelly by high performance liquid chromatography/mass spectrometry/mass spectrometry. Chin J Anal Chem 33(12):1767–1770

    CAS  Google Scholar 

  18. Ortelli D, Edder P, Corvi C (2004) Analysis of chloramphenicol residues in honey by liquid chromatography-tandem mass spectrometry. Chromatographia 59(1–2):61–64

    CAS  Google Scholar 

  19. Mackie J, Marley E, Donnell C (2013) Immunoaffinity column cleanup with LC/MS/MS for the determination of chloramphenicol in honey and prawns: single-laboratory validation. J AOAC Int 96(4):910–916

    Article  CAS  Google Scholar 

  20. Pan C, Zhang H, Chen S, Xu Y, Jiang S (2006) Determination of chloramphenicol residues in honey by monolithic column liquid chromatography–mass spectrometry after use of quechers clean-up. Acta Chromatogr 17:320–327

    CAS  Google Scholar 

  21. Blachon G, Picard P, Tremblay P, Demers S, Paquin R, Babin Y, Fayad PB (2013) Rapid determination of chloramphenicol in honey by laser diode thermal desorption using atmospheric pressure chemical ionization-tandem mass spectrometry. J AOAC Int 96(3):676–679

    Article  CAS  Google Scholar 

  22. Kara M, Uzun L, Kolayli S, Denizli A (2013) Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey. J Appl Polym Sci 129(4):2273–2279

    Article  CAS  Google Scholar 

  23. Yu X, He Y, Jiang J, Cui H (2014) A competitive immunoassay for sensitive detection of small molecules chloramphenicol based on luminol functionalized silver nanoprobe. Anal Chim Acta 812:236–242

    Article  CAS  Google Scholar 

  24. Yang Q, Wang H, Maas JD, Chappell WJ, Manicke NE, Cooks RG, Ouyang Z (2012) Paper spray ionization devices for direct, biomedical analysis using mass spectrometry. Int J Mass Spectrom 312:201–207

    Article  CAS  Google Scholar 

  25. Chen HW, Wortmann A, Zhang WH, Zenobi R (2007) Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew Chem Int Ed 46(4):580–583

    Article  CAS  Google Scholar 

  26. Li JQ, Zhou YF, Ding JH, Yang SP, Chen HW (2008) Rapid detection of toluene-2,4-diisocyanate in various sports fields using extractive electrospray ionization mass spectrometry. Chin J Anal Chem 36(9):1300–1304

    Article  CAS  Google Scholar 

  27. Chen HW, Venter A, Cooks RG (2006) Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun 19:2042–2044

    Article  Google Scholar 

  28. Chen HW, Yang SP, Li M, Hu B, Li JQ, Wang J (2010) Sensitive detection of native proteins using extractive electrospray ionization mass spectrometry. Angew Chem Int Ed 49(17):3053–3056

    Article  CAS  Google Scholar 

  29. Gu HW, Hu B, Li JQ, Yang SP, Han J, Chen HW (2010) Rapid analysis of aerosol drugs using nano extractive electrospray ionization tandem mass spectrometry. Analyst 35(6):1259–1267

    Article  Google Scholar 

  30. Li X, Hu B, Ding JH, Chen HW (2011) Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry. Nat Protoc 6(7):1010–1025

    Article  CAS  Google Scholar 

  31. Ding JH, Yang SP, Liang DP, Chen HW, Wu ZZ, Zhang LL, Ren YL (2009) Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis. Analyst 134(10):2040–2050

    Article  CAS  Google Scholar 

  32. Law WS, Chen HW, Ding JH, Yang SP, Zhu L, Gamez G, Chingin K, Ren YL, Zenobi R (2009) Rapid characterization of complex viscous liquids at the molecular level. Angew Chem Int Ed 48(44):8277–8280

    Article  CAS  Google Scholar 

  33. Ding JH, Gu HW, Yang SP, Li M, Li JQ, Chen HW (2009) Selective detection of diethylene glycol in toothpaste products using neutral desorption reactive extractive electrospray ionization tandem mass spectrometry. Anal Chem 81(20):8632–8638

    Article  CAS  Google Scholar 

  34. Chen HW, Lai JH, Zhou YF, Huan YF, Li JQ, Zhang X, Wang ZC, Luo MB (2007) Instrumentation and characterization of surface desorption atmospheric pressure chemical ionization mass spectrometry. Chin J Anal Chem 35(8):1233–1240

    Article  CAS  Google Scholar 

  35. Chen HW, Hu B, Zhang X (2010) Fundamental principles and practical applications of ambient ionization mass spectrometry for direct analysis of complex samples. Chin J Anal Chem 38(8):1069–1088

    Article  CAS  Google Scholar 

  36. Turnipseed SB, Clark SB, Storey JM, Carr JR (2012) Analysis of veterinary drug residues in frog legs and other aquacultured species using liquid chromatography quadrupole time-of-flight mass spectrometry. J Agric Food Chem 60(18):4430–4439

    Article  CAS  Google Scholar 

  37. Bononi M, Tateo F (2008) Liquid chromatography/tandem mass spectrometry analysis of chloramphenicol in propolis extracts available on the Italian market. J Food Compos Anal 21(1):84–89

    Article  CAS  Google Scholar 

  38. Bogusz MJ, Hassan H, Al-Enazi E, Ibrahim Z, Al-Tufail M (2004) Rapid determination of chloramphenicol and its glucuronide in food products by liquid chromatography–electrospray negative ionization tandem mass spectrometry. J Chromatogr B 807(2):343–356

    Article  CAS  Google Scholar 

  39. Yin L, Xu L, Yu K, Zhen Y, Han X, Xu Y, Qi Y, Peng J, Tan A (2011) Orthogonal test design for optimization of suitable conditions to separateC-phycocyanin from Spirulina platensis by high-speed counter-current chromatography using reverse micelle solvent system. J Sep Sci 34(11):1253–1260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the 12th Five-rural Areas of the National Science and Technology Plan Project (No.2012BDA29B01), the National Natural Science Foundation of China (Grant No. 31071551), and the International Science and Technical Cooperation Program of Jiangxi Province (20121BDH80020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. W. Chen or L. P. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X.Y., Fang, X.W., Zhang, X. et al. Direct detection of chloramphenicol in honey by neutral desorption-extractive electrospray ionization mass spectrometry. Anal Bioanal Chem 406, 7705–7714 (2014). https://doi.org/10.1007/s00216-014-8176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8176-y

Keywords

Navigation