Skip to main content

Advertisement

Log in

Detection of conformation types of cyclosporin retaining intramolecular hydrogen bonds by mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cyclosporin is a family of neutral cyclic undecapeptides widely used for the prevention of organ transplant rejection and controlling viral infection. The equilibrium of conformations assumed by cyclosporin A in response to the solvent environment is thought to play a critical role in enabling good membrane penetration, which improves upon shielding the polarity of the molecule through forming intramolecular hydrogen bonds. However, the distribution of structures and their internal hydrogen bond geometries have not been elucidated thus far across the series of cyclosporins. Herein, we elucidate the conformational heterogeneity of cyclosporins using a set of analytical approaches including ion mobility mass spectrometry, hydrogen–deuterium exchange, and molecular dynamics simulation. Ion mobility measurements reveal a specific conformational distribution for each cyclosporin derivative in a structure-dependent manner. In general, we observe that the more compact conformer is associated with a greater frequency of intramolecular hydrogen bonds. Cyclosporin A is populated by structures with an extensive hydrogen bond network that is lacking in cyclosporin H, which is composed predominantly of a single compact conformation. The slower dynamics of cyclosporin H backbone is also consistent with the lack of hydrogen bonds. Furthermore, we find a strong correlation between the steric bulk of the side chain at position 2 of cyclosporin and the distribution of conformers due to differential accommodation of side chains within the macrocycle, and also report a wide range of conformational dynamics in solution.

Cyclosporin analogues display distinct conformation types with different hydrogen bonding arrangements

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loosli H-R , Kessler H, Oschkinat H et al (1985) Peptide conformations. Part 31. The conformation of cyclosporin a in the crystal and in solution. Helv Chim Acta 68:682–704

    Article  CAS  Google Scholar 

  2. Wainberg MA, Dascal A, Blain N et al (1988) The effect of cyclosporine A on infection of susceptible cells by human immunodeficiency virus type 1. Blood 72:1904–1910

    CAS  Google Scholar 

  3. Vahlne A, Larsson P-A, Horal P et al (1992) Inhibition of herpes simplex virus production in vitro by cyclosporin A. Arch Virol 122:61–75

  4. Damaso CRA, Keller SJ (1994) Cyclosporin A inhibits vaccinia virus replication in vitro. Arch Virol 134:303–319

  5. Wenger RM, France J, Bovermann G et al (1994) The 3D structure of a cyclosporin analogue in water is nearly identical to the cyclophilin-bound cyclosporin conformation. FEBS Lett 340:255–259

    Article  CAS  Google Scholar 

  6. Shaw RA, Mantsch HH, Chowdhry BZ (1993) Solvent influence on the conformation of cyclosporin. An FT-IR study. Can J Chem 71:1334–1339

    Article  CAS  Google Scholar 

  7. Stevenson CL, Tan MM, Lechuga-Ballesteros D (2003) Secondary structure of cyclosporine in a spray-dried liquid crystal by FTIR. J Pharm Sci 92:1832–1843

    Article  CAS  Google Scholar 

  8. Bodack LA, Freedman TB, Chowdhry BZ, Nafie LA (2004) Solution conformations of cyclosporins and magnesium-cyclosporin complexes determined by vibrational circular dichroism. Biopolymers 73:163–177

    Article  CAS  Google Scholar 

  9. Shaw RA, Mantsch HH, Chowdhry BZ (1994) Conformational changes in the cyclic undecapeptide cyclosporin induced by interaction with metal ions. An FTIR study. Int J Biol Macromol 16:143–148

    Article  CAS  Google Scholar 

  10. Bernardi F, Gaggelli E, Molteni E et al (2006) 1H and 13C-NMR and molecular dynamics studies of cyclosporin A interacting with magnesium(II) or cerium(III) in acetonitrile. Conformational changes and cis-trans conversion of peptide bonds. Biophys J 90:1350–1361

    Article  CAS  Google Scholar 

  11. O’Leary TJ, Ross PD, Lieber MR, Levin IW (1986) Effects of cyclosporine A on biomembranes. Vibrational spectroscopic, calorimetric and hemolysis studies. Biophys J 49:795–801

    Article  Google Scholar 

  12. Rezai T, Bock JE, Zhou MV et al (2006) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc 128:14073–14080

    Article  CAS  Google Scholar 

  13. Beck JG, Chatterjee J, Laufer B et al (2012) Intestinal permeability of cyclic peptides: common key backbone motifs identified. J Am Chem Soc 134:12125–12133

    Article  CAS  Google Scholar 

  14. Von Wartburg A, Traber R (1986) Chemistry of the natural cyclosporin metabolites. In: Borel JF (ed) Chem. Immunol. Allergy. KARGER, Basel, pp 28–45

  15. Hiestand PC, Gubler HU (1988) Cyclosporins: immunopharmacologic properties of natural cyclosporins. In: Bray MA, Morley J (eds) Pharmacol. Lymph. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 487–502

  16. Rich DH, Dhaon MK, Dunlap B, Miller SPF (1986) Synthesis and antimitogenic activities of four analogs of cyclosporin A modified in the 1-position. J Med Chem 29:978–984

    Article  CAS  Google Scholar 

  17. Potter B, Palmer RA, Withnall R et al (2003) Two new cyclosporin folds observed in the structures of the immunosuppressant cyclosporin G and the formyl peptide receptor antagonist cyclosporin H at ultra-high resolution. Org Biomol Chem 1:1466–1474

    Article  CAS  Google Scholar 

  18. Alexandr Jegorov LC (2000) Synthesis and crystal structure determination of cyclosporin H.

  19. Gardberg AS, Potter BS, Palmer RA et al (2010) The neutron structure of the formyl peptide receptor antagonist cyclosporin H (CsH) unambiguously determines the solvent and hydrogen-bonding structure for crystal form II. J Chem Crystallogr 41:470–480

    Article  Google Scholar 

  20. Benesch JLP, Ruotolo BT, Simmons DA, Robinson CV (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:3544–3567

    Article  CAS  Google Scholar 

  21. Zhong Y, Hyung S-J, Ruotolo BT (2012) Ion mobility–mass spectrometry for structural proteomics. Expert Rev Proteomics 9:47–58

    Article  CAS  Google Scholar 

  22. Chen L, Gao YQ, Russell DH (2012) How alkali metal ion binding alters the conformation preferences of gramicidin A: a molecular dynamics and ion mobility study. J Phys Chem A 116:689–696

    Article  CAS  Google Scholar 

  23. Hyung S-J, DeToma AS, Brender JR et al (2013) Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc Natl Acad Sci 110:3743–3748

  24. Dupuis NF, Wu C, Shea JE, Bowers MT (2011) The amyloid formation mechanism in human IAPP: dimers have beta-strand monomer-monomer interfaces. J Am Chem Soc 133:7240–7243

    Article  CAS  Google Scholar 

  25. Marcsisin SR, Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397:967–972

    Article  CAS  Google Scholar 

  26. Wei H, Mo J, Tao L, et al. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today.

  27. Konermann L, Pan J, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40:1224–1234

    Article  CAS  Google Scholar 

  28. Zhang Y, Rempel DL, Zhang J et al (2013) Pulsed hydrogen–deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation. Proc Natl Acad Sci 110:14604–14609

    Article  CAS  Google Scholar 

  29. Bush MF, Hall Z, Giles K et al (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82:9557–9565

    Article  CAS  Google Scholar 

  30. Ruotolo BT, Benesch JLP, Sandercock AM et al (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152

    Article  CAS  Google Scholar 

  31. Weis DD, Engen JR, Kass IJ (2006) Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J Am Soc Mass Spectrom 17:1700–1703

    Article  CAS  Google Scholar 

  32. 32. Case D, Darden T, Cheatham, et al. (2008) AMBER 10. University of California, San Francisco

  33. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  34. Cheatham TEI, Miller JL, Fox T et al (1995) Molecular dynamics simulations on solvated biomolecular systems - The particle mesh Ewald method leads to stable trajectories of DNA, RNA and proteins. J Am Chem Soc 117:4193–4194

    Article  CAS  Google Scholar 

  35. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  36. Ryckaert J-P , Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  37. Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers 32:523–535

  38. Mesleh MF, Hunter JM, Shvartsburg AA et al (1996) Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem 100:16082–16086

    Article  CAS  Google Scholar 

  39. Shvartsburg AA, Liu B, Jarrold MF, Ho K-M (2000) Modeling ionic mobilities by scattering on electronic density isosurfaces: application to silicon cluster anions. J Chem Phys 112:4517–4526

    Article  CAS  Google Scholar 

  40. Feig M, Karanicolas J, Brooks CL III (2004) MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 22:377–395

    Article  CAS  Google Scholar 

  41. Chen L, Shao Q, Gao Y-Q, Russell DH (2011) Molecular dynamics and ion mobility spectrometry study of model β-hairpin peptide, trpzip1. J Phys Chem A 115:4427–4435

    Article  CAS  Google Scholar 

  42. Morsa D, Gabelica V, De Pauw E (2011) Effective temperature of ions in traveling wave ion mobility spectrometry. Anal Chem 83:5775–5782

    Article  CAS  Google Scholar 

  43. Merenbloom S, Flick T, Williams E (2012) How hot are your ions in TWAVE ion mobility spectrometry? J Am Soc Mass Spectrom 23:553–562

    Article  CAS  Google Scholar 

  44. Knott RB, Schefer J, Schoenborn BP (1990) Neutron structure of the immunosuppressant cyclosporin A. Acta Crystallogr Sect C 46:1528–1533

    Article  Google Scholar 

  45. Goodwin CR, Fenn LS, Derewacz DK et al (2012) Structural mass spectrometry: rapid methods for separation and analysis of peptide natural products. J Nat Prod 75:48–53

    Article  CAS  Google Scholar 

  46. Chen L, Chen S-H, Russell DH (2013) An experimental study of the solvent-dependent self-assembly /disassembly and conformer preferences of gramicidin A. Anal Chem 85:7826–7833

  47. Pierson NA, Chen L, Valentine SJ et al (2011) Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J Am Chem Soc 133:13810–13813

    Article  CAS  Google Scholar 

  48. Weber C, Wider G, Von Freyberg B et al (1991) NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry (Mosc) 30:6563–6574

    Article  CAS  Google Scholar 

  49. De Paulis A, Ciccarelli A, de Crescenzo G et al (1996) Cyclosporin H is a potent and selective competitive antagonist of human basophil activation by N-formyl-methionyl-leucyl-phenylalanine. J Allergy Clin Immunol 98:152–164

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xidong Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyung, SJ., Feng, X., Che, Y. et al. Detection of conformation types of cyclosporin retaining intramolecular hydrogen bonds by mass spectrometry. Anal Bioanal Chem 406, 5785–5794 (2014). https://doi.org/10.1007/s00216-014-8023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8023-1

Keywords

Navigation