Skip to main content

Advertisement

Log in

Rapid and simple electrochemical detection of morphine on graphene–palladium-hybrid-modified glassy carbon electrode

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A hybrid of reduced graphene oxide–palladium (RGO–Pd) nano- to submicron-scale particles was simultaneously chemically prepared using microwave irradiation. The electrochemical investigation of the resulting hybrid was achieved using cyclic voltammetry and differential pulse voltammetry. RGO–Pd had a higher current response than unmodified RGO toward the oxidation of morphine. Several factors that can affect the electrochemical response were studied, including accumulation time and potential, Pd loading, scan rate, and pH of electrolyte. At the optimum conditions, the concentration of morphine was determined using differential pulse voltammetry in a linear range from 0.34 to 12 μmol L−1 and from 14 to 100 μmol L−1, with detection limits of 12.95 nmol L−1 for the first range. The electrode had high sensitivity toward morphine oxidation in the presence of dopamine (DA) and of the interference compounds ascorbic acid (AA) and uric acid (UA). Electrochemical determination of morphine in a spiked urine sample was performed, and a low detection limit was obtained. Validation conditions including reproducibility, sensitivity, and recovery were evaluated successfully in the determination of morphine in diluted human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghazi-Khansari M, Zendehdel R, Pirali-Hamedani M, Amini M (2006) Determination of morphine in the plasma of addicts in using Zeolite Y extraction following high-performance liquid chromatography. Clin Chim Acta 364:235–238

    Article  CAS  Google Scholar 

  2. Atta NF, Galal A, Ahmed RA (2011) Direct and simple electrochemical determination of morphine at PEDOT modified Pt electrode. Electroanalysis 23:737–746

    CAS  Google Scholar 

  3. Verpoorte R, Svendsen AB (1984) Chromatography of alkaloids. Amsterdam-Oxford-New york-Tokyo, Elsevier

    Google Scholar 

  4. Norouzi P, Ganjali MR, Moosavi-movahedi AA, Larijani B (2007) Fast Fourier transformation with continuous cyclic voltammetry at an Au microelectrode for the determination of morphine in a flow injection system. Talanta 73:54–61

    Article  CAS  Google Scholar 

  5. Ary K, Róna K (2001) LC determination of morphine and morphine glucuronides in human plasma by coulometric and UV detection. J Pharm Biomed Anal 26:179–187

    Article  CAS  Google Scholar 

  6. Projean D, Tu TM, Ducharme J (2003) Rapid and simple method to determine morphine and its metabolites in rat plasma by liquid chromatography-mass spectrometry. J Chromatogr B 787:243–253

    Article  CAS  Google Scholar 

  7. Pejić ND, Blagojević SM, Anić SR, Vukojević VB, Mijatovicć MD, Ćirić JS, Marković GS, Marković SD, Kolar-Anić JZ (2007) Kinetic determination of morphine by means of Bray–Liebhafsky oscillatory reaction system using analyte pulse perturbation technique. Anal Chim Acta 582:367–374

    Article  Google Scholar 

  8. Lee HM, Lee CW (1991) Determination of morphine and codeine in blood and bile by gas chromatography with a derivatization procedure. J Anal Toxicol 15:182–187

    Article  CAS  Google Scholar 

  9. Chari G, Gulati A, Bhat R, Tebbett IR (1991) High-performance liquid chromatographic determination of morphine, morphine-3-glucuronide, morphine-6-glucuronide and codeine in biological samples using multi-wavelength forward optical detection. J Chromatogr B 571:263–270

    Article  CAS  Google Scholar 

  10. Tagliaro F, Franchi D, Dorizzi R, Marigo M (1989) High-performance liquid chromatographic determination of morphine in biological samples: an overview of separation methods and detection techniques. J Chromatogr B 488:215–228

    Article  CAS  Google Scholar 

  11. Soares ME, Seabra V, Bastos ML (1992) Comparative study of different extractive procedures to quantify morphine in urine by HPLC-UV. J Liq Chromatogr 15:1533–1541

    Article  CAS  Google Scholar 

  12. Guillot JG, Lefebvre M, Weber JP (1997) Acetylmorphine, and morphine in biological fluids using their propionyl derivatives with ion trap GC-MS. J Anal Toxicol 21:127–133

    Article  CAS  Google Scholar 

  13. Dams R, Benijts T, Lambert WE, De Leenheer AP (2002) Simultaneous determination of in total 17 opium alkaloids and opioids in blood and urine by fast liquid chromatography–diode-array detection–fluorescence detection, after solid-phase extraction. J Chromatogr B 773:53–61

    Article  CAS  Google Scholar 

  14. Lewis SW, Francis PS, Lim KF, Jenkins GE, Wang XD (2000) Pulsed flow chemistry: a new approach to solution handling for flow analysis coupled with chemiluminescence detection. Analyst 125:1869–1874

    Article  CAS  Google Scholar 

  15. Sakai G, Ogata K, Uda T, Miura N, Yamazoe N (1998) A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine. Sensors Actuators B Chem 49:5–12

    Article  CAS  Google Scholar 

  16. Taylor RB, Low AS, Reid RG (1996) Determination of opiates in urine by capillary electrophoresis. J Chromatogr B 675:213–223

    Article  CAS  Google Scholar 

  17. Macchia M, Manetto G, Mori C, Papi C, Pietr ND, Salott V, Bortolotti F, Tagliaro F (2001) Use of β-cyclodextrin in the capillary zone electrophoretic separation of the components of clandestine heroin preparations. J Chromatogr A 924:499–506

    Article  CAS  Google Scholar 

  18. Mi JQ, Zhang XX, Chang WB (2004) Determination of morphine by capillary zone electrophoresis immunoassay combined with laser-induced fluorescence detection. J Immunoassay Immunochem 25:57–70

    Article  CAS  Google Scholar 

  19. Tsai JL, Wu WS, Lee HH (2000) Qualitative determination of urinary morphine by capillary zone electrophoresis and ion trap mass spectrometry. Electrophoresis 21:1580–1586

    Article  CAS  Google Scholar 

  20. Navaee A, Salimi A, Teymourian H (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31:205–211

    Article  CAS  Google Scholar 

  21. Xu F, Gao M, Wang L, Zhou T, Jin L, Jin J (2002) Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates. Talanta 58:427–432

    Article  CAS  Google Scholar 

  22. Rodriguez JRB, Diaz VC, Garcia AC, Blanco PT (1990) Voltammetric assay of heroin in illicit dosage forms. Analyst 115:209–212

    Article  Google Scholar 

  23. Rezaei B, Zare SZM (2008) Modified glassy carbon electrode with multiwall carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples. Sens Actuators B 134:292–299

    Article  CAS  Google Scholar 

  24. Garrido JMPJ, Matos CD, Borges F, Macedo TRA, Oliveira-Brett AM (2004) Voltammetric Oxidation of Drugs of Abuse III. Heroin and Metabolites. Electroanalysis 16:1497–1502

    Article  CAS  Google Scholar 

  25. Li F, Song J, Gao D, Zhang Q, Han D, Niu L (2009) Simple and rapid voltammetric determination of morphine at electrochemically pretreated glassy carbon electrodes. Talanta 79:845–850

    Article  CAS  Google Scholar 

  26. Salimi A, Hallaj R, Khayatian GR (2005) Amperometric detection of morphine at preheated glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:873–879

    Article  CAS  Google Scholar 

  27. Li F, Son J, Shan C, Gao D, Xu X, Niu L (2010) Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosens Bioelectron 25:1408–1413

    Article  CAS  Google Scholar 

  28. Ho KC, Chen CY, Hsu HC, Chen LC, Shiesh SC, Lin XZ (2004) Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens Bioelectron 20:3–8

    Article  CAS  Google Scholar 

  29. Yeh W-M, Ho K-C (2005) Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Anal Chim Acta 542:76–82

    Article  CAS  Google Scholar 

  30. Weng C-H, Yeh W-M, Ho K-C, Lee G-B (2007) A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sens Actuators B 121:576–582

    Article  CAS  Google Scholar 

  31. Ho K-C, Yeh W-M, Tung T-C, Liao J-Y (2005) Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal Chim Acta 542:90–96

    Article  CAS  Google Scholar 

  32. Babaei A, Babazadeh M, Momeni HR (2011) A sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled CarbonNanotube/Chitosan composite modified glassy carbon electrode. Int J Electrochem Sci 6:1382–1395

    CAS  Google Scholar 

  33. Yang G, Chen Y, Li L, Yang Y (2011) Direct electrochemical determination of morphine on a novel gold nanotube arrays electrode. Clin Chim Acta 412:1544–1549

    Article  CAS  Google Scholar 

  34. Pournaghi-Azar MH, Saadatirad A (2008) Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. J Electroanal Chem 624:293–298

    Article  CAS  Google Scholar 

  35. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  36. Leenearts O, Partoens B, Peeters FM (2009) Structure size dependent recovery of thin polystyrene layers in thermal imprint lithography. Microelectron J 40:860–863

    Article  Google Scholar 

  37. Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun 11:846–849

    Article  Google Scholar 

  38. Peralta-Inga Z, Murry JS, Grice ME, Boyd S, O’Conner CJ, Politzer P (2001) Computational characterization of surfaces of model graphene systems. J Mol Struct 549:147–158

    Article  CAS  Google Scholar 

  39. Dong L, Reddy R, Gari S, Li Z, Craig MM, Hou SS (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787

    Article  CAS  Google Scholar 

  40. Wu J, Wang Y, Zhang D, Hou B (2011) Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources 196:1141–1144

    Article  CAS  Google Scholar 

  41. Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources 195:4628–4633

    Article  CAS  Google Scholar 

  42. Zheng M, Takei K, Hsia B, Fang H, Zhan X, Ferralis N, Ko H, Chueh Y-L, Zhang Y, Mabudian R, Javey A (2010) Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett. doi:10.1063/1.3318263

    Google Scholar 

  43. Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  CAS  Google Scholar 

  44. Xu C, Wang X, Zhu J (2008) Graphene−metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  45. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266

    Article  CAS  Google Scholar 

  46. Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  47. Kou R, Shao Y, Wang D, Engelhard HM, Kwak JH, Wang J, Vilayanur VV, Wang C, Lin Y, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954–957

    Article  CAS  Google Scholar 

  48. Xu C, Wang X (2009) Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 5:2212–2217

    Article  CAS  Google Scholar 

  49. Sundaram RS, Navarro CG, Balasubramanian K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050–3053

    Article  CAS  Google Scholar 

  50. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  51. Hassan HK, Atta NF, Galal A (2013) Electrodeposited nanostructured Pt–Ru co-catalyst on graphene for the electrocatalytic oxidation of formaldehyde. J Solid State Electrochem 17:1717–1727

    Article  CAS  Google Scholar 

  52. Proka B, Molnàr L (1978) Voltammetric determination of morphine on stationary platinum and graphite electrodes. Anal Chim Acta 97:149–154

    Article  Google Scholar 

  53. Phillip HJ, Hart JP (1991) Voltammetric behaviour of morphine at a glassy carbon electrode and its determination in human serum by liquid chromatography with electrochemical detection under basic conditions. Analyst 116:991–996

    Article  Google Scholar 

  54. Pournaghi-Azar MH, Saadatirad A (2009) Oxidation pathways and kinetics of morphine in acidic and neutral media on the aluminum electrode covered by metallic palladium and modified by Prussian blue. J Solid State Electrochem 13:1233–1239

    Article  CAS  Google Scholar 

  55. Rezaei B, Damiri S (2010) Development of a voltammetric procedure for assay of thebaine at a multi-walled carbon nanotubes electrode: quantification and electrochemical studies. J Solid State Electrochem 14:1079–1088

    Article  CAS  Google Scholar 

  56. Rook EJ, Huitema ADR, Van den Brink W, van Ree JN, Beijnen JH (2006) Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: review of the literature. Curr Clin Pharmacol 1:109–118

    Article  CAS  Google Scholar 

  57. Atta NF, Galal A, Ahmed RA (2011) Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Bioelectrochemistry 80:132–141

    Article  CAS  Google Scholar 

  58. Zhan Z, Zhang C, Su X, Ma M, Chen B, Yao S (2008) Carrier-mediated liquid phase microextraction coupled with high performance liquid chromatography for determination of illicit drugs in human urine. Anal Chim Acta 621:185–192

    Article  Google Scholar 

  59. Li F, Song J, Shan C, Gao D (2012) Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosens Bioelectron 25:1408–1413

    Article  Google Scholar 

  60. Mokhtari A, Karimi-Maleh H, Ensafi A, Beitollahi H (2012) Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens Actuators B 169:96–105

    Article  CAS  Google Scholar 

  61. Atta N, Galal A, Wassel A, Ibrahim A (2012) Sensitive electrochemical determination of morphine using gold nanoparticles-ferrocene modified carbon paste electrode. Int J Electrochem Sci 7:10501–10518

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from Cairo University through the Vice President Office for Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Galal.

Additional information

Published in the topical collection Graphene in Analytics with guest editors Martin Pumera, Ronen Polsky, and Craig Banks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, N.F., Hassan, H.K. & Galal, A. Rapid and simple electrochemical detection of morphine on graphene–palladium-hybrid-modified glassy carbon electrode. Anal Bioanal Chem 406, 6933–6942 (2014). https://doi.org/10.1007/s00216-014-7999-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7999-x

Keywords

Navigation