Skip to main content
Log in

Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tip-enhanced Raman scattering (TERS) was paired with real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to characterize lipid aggregates during stimulated re-epithelialization using an in vitro wound healing model. In this study, lipid fluctuations in the plasma membrane of epidermal keratinocytes were studied at multiple time points post-wounding. TERS measurements for the first time were also combined with sample analysis after initial wounding and 24 h of wound healing. This enabled simultaneous visualization and characterization of caveolar bulb distribution during wound healing stages, providing noninvasive insight into their associated lipid structure and coating protein, caveolin, in the nanometer range. The combination of Raman spectroscopy and scanning probe microscopy in TERS gives access to topographic and chemical structure information in a single experiment. It is the intrinsic specificity and sensitivity of TERS that enable this discrete detection of cell surface components on the nanometer scale. In contrast with competing biochemical methods, the applied technique does not interfere with the cellular composition, enabling lipid structure analysis without digestion or detergents, and displayed great potential for future biological in vivo studies.

tip_enhanced Raman spectroscopy of cell caveolar bulbs formed on a wound healing model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 8:887–901

    Article  Google Scholar 

  2. Conti MA, Adelstein RS (2008) Nonmuscle myosin II moves in new directions. J Cell Sci 121:11–18

    Article  CAS  Google Scholar 

  3. Olguin P, Mlodzik M (2010) A new spin on planar cell polarity. Cell 142:674–676

    Article  CAS  Google Scholar 

  4. Gniadecki R, Bang B (2003) Flotillas of lipid rafts in transit amplifying cell-like keratinocytes. J Investig Dermatol 121:522–528

    Article  CAS  Google Scholar 

  5. Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851

    CAS  Google Scholar 

  6. Navarro A, Anand-Apte B, Parat MO (2004) A role for caveolae in cell migration. FASEB J 18:1801–1811

    Article  CAS  Google Scholar 

  7. Lajoie P, Nabi IR (2010) Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol 282:135–163

    Article  CAS  Google Scholar 

  8. Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214.211–241.215

    Article  Google Scholar 

  9. Rothberg G, Heuser J, Donzell W, Ying Y-S, Glenney JR, Anderson R (1992) Caveolin, a protein component of caveolae membrane coat. Cell 68:673–682

    Article  CAS  Google Scholar 

  10. Wang Z, Tiruppathi C, Minshall RD, Malik AB (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. Nano 3:4110–4116

    CAS  Google Scholar 

  11. Lucius H, Friedrichson T, Kurzchialia T, Lewin G (2003) Identification of caveolae-like structures on the surface of intact cells using scanning force microscopy. J Membr Biol 194:97–108

    Article  CAS  Google Scholar 

  12. Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  CAS  Google Scholar 

  13. Stan RV (2005) Structure of caveolae. Biochim Biophys Acta 1746:334–348

    Article  CAS  Google Scholar 

  14. Kenworthy A (2002) Peering inside lipid rafts and caveolae. Trends Biochem Sci 27:435–437

    Article  CAS  Google Scholar 

  15. Kuerschner L, Ejsing CS, Ekroos K, Shevchenko A, Anderson KI, Thiele C (2005) Polyene-lipids: a new tool to image lipids. Nat Methods 2:39–45

    Article  CAS  Google Scholar 

  16. Zheng Y, Foster J (2009) Contribution of quantitative proteomics to understanding membrane microdomains. J Lipid Res 50:1976–1985

    Article  CAS  Google Scholar 

  17. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    Article  CAS  Google Scholar 

  18. Willets KA, Van Duyne P (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  19. Pozzi EA, Sonntag MD, Jiang N, Klingsporn JM, Hersam MC, Van Duyne P (2013) Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale. ACS Nano 7:885–888

    Article  CAS  Google Scholar 

  20. Pettinger B, Schambach P, Villagomez CJ, Scott N (2012) Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem 63:379–399

    Article  CAS  Google Scholar 

  21. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    Article  CAS  Google Scholar 

  22. Richter M, Hedegaard M, Deckert-Gaudig T, Lampen P, Deckert V (2011) Laterally resolved and direct spectroscopic evidence of nanometer-sized lipid and protein domains on a single cell. Small 7:209–214

    Article  CAS  Google Scholar 

  23. Deckert-Gaudig T, Böhme R, Freier E, Sebesta A, Merkendorf T, Popp J, Gerwert K, Deckert V (2012) Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum. J Biophoton 5:582–591

    Article  Google Scholar 

  24. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40:240–243

    Article  CAS  Google Scholar 

  25. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  Google Scholar 

  26. Grande-García A, del Pozo M (2008) Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol 87:641–647

    Article  Google Scholar 

  27. Gomez-Mouton C, Lacalle RA, Mira E, Jimenez-Baranda S, Barber DF, Carrera AC, Martinez AC, Manes S (2004) Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 164:759–768

    Article  CAS  Google Scholar 

  28. Böhme R, Cialla D, Richter M, Rösch P, Popp J, Deckert J (2010) Biochemical imaging below the diffraction limit—probing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). J Biophoton 3:455–461

    Article  Google Scholar 

  29. Krafft C, Knetschke T, Siegner A, Funk RHW, Salzer R (2003) Mapping of single cells by near infrared Raman microscopy. Vib Spectrosc 32:75–83

    Article  CAS  Google Scholar 

  30. Lamba OP, Borchman D, Sinha SK, Lal S, Yappert MC, Lou MF (1991) Structure and molecular conformation of anhydrous and aqueous sphingomyelin bilayers determined by infrared and Raman spectroscopy. J Mol Struct 248:1–24

    Article  CAS  Google Scholar 

  31. Borchman D, Tang D, Yappert MC (1999) Lipid composition, membrane structure relationships in lens and muscle sarcoplasmic reticulum membranes. Biospectroscopy 5:151–167

    Article  CAS  Google Scholar 

  32. Faiman R (1977) Raman spectroscopic studies of different forms of cholesterol and its derivatives in the crystalline state. Chem Phys Lipids 18:84–104

    Article  CAS  Google Scholar 

  33. Sando GN, Zhu H, Weis JM, Richman JT, Wertz PW, Madison KC (2003) Caveolin expression and localization in human keratinocytes suggest a role in lamellar granule biogenesis. J Investig Dermatol 120:531–541

    Article  CAS  Google Scholar 

  34. Quest AFG, Leyton L, Párraga M (2004) Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease. Biochem Cell Biol 82:129–144

    Article  CAS  Google Scholar 

  35. Epand RM, Sayer BG, Epand RF (2005) Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol 345:339–350

    Article  CAS  Google Scholar 

  36. Sonnino S, Prinetti A (2009) Sphingolipids and membrane environments for caveolin. Fed Eur Biochem Soc 583:597–606

    Article  CAS  Google Scholar 

  37. Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta 1758:1945–1956

    Article  CAS  Google Scholar 

  38. Lisantti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126:111–126

  39. Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by Src tyrosine kinases. J Biol Chem 271:3863–3868

    Article  CAS  Google Scholar 

  40. Tagawa A, Mezzacasa A, Hayer A, Longatti A, Pelkmans L, Helenius A (2005) Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol 170:769–779

    Article  CAS  Google Scholar 

  41. Li WP, Liu P, Pilcher BK, Anderson RG (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114:1397–1408

    CAS  Google Scholar 

  42. Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW (2008) Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 19:912–928

    Article  CAS  Google Scholar 

  43. Rhim JH, Kim JH, Yeo EJ, Kim JC, Park SC (2010) Caveolin-1 as a novel indicator of wound-healing capacity in aged human corneal epithelium. Mol Med 16:527–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bundesministerium für Bildung und Forschung (No. 0312032B and No. 0312032C) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Deckert.

Additional information

Published in the topical collection Single Cell Analysis with guest editors Petra Dittrich and Norbert Jakubowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watkins-Mariani, M., Deckert-Gaudig, T. & Deckert, V. Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization. Anal Bioanal Chem 406, 6993–7002 (2014). https://doi.org/10.1007/s00216-014-7998-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7998-y

Keywords

Navigation