Skip to main content
Log in

Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 21 August 2014

Abstract

The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10−4 mol L−1 in 1 mol L−1 HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min−1, discharge current = 10 mA, solution flow rate = 10 μL min−1, and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL−1 for 10 μL injections, with absolute mass values from 0.2 to 4 ng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. le Gac S, van den Berg A (eds) (2008) Miniaturization and mass spectrometry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Xu W, Manicke NE, Cooks GR, Ouyang Z (2010) J Lab Autom 15:433–439

    Article  CAS  Google Scholar 

  3. Foret F (2005) Mol Cell Proteomics 4:S5–S5

    Google Scholar 

  4. Wood TD, Moy MA, Dolan AR, Bigwarfe PM, White TP, Smith DR, Higbee DJ (2003) Appl Spectrosc Rev 38:187–244

    Article  CAS  Google Scholar 

  5. Bacon JR, Linge KL, Parrish RR, Van Vaeck L (2008) J Anal At Spectrom 23:1130–1162

    Article  CAS  Google Scholar 

  6. Clough R, Harrington CF, Hill SJ, Madrid Y, Tyson JF (2013) J Anal At Spectrom 28:1153–1195

    Article  CAS  Google Scholar 

  7. Evans EH, Horstwood M, Pisonero J, Smith CMM (2013) J Anal At Spectrom 28:779–800

    Article  CAS  Google Scholar 

  8. Ganeev AA, Gubal AR, Uskov KN, Potapov SV (2012) Russ Chem Bull 61:752–767

    Article  CAS  Google Scholar 

  9. Koppenaal DW, Eiden GC, Barinaga CJ (2004) J Anal At Spectrom 19:561–570

    Article  CAS  Google Scholar 

  10. Olesik JW, Jones DR (2006) J Anal At Spectrom 21:141–159

    Article  CAS  Google Scholar 

  11. Marcus RK (1993) Glow discharge spectroscopies. Plenum, New York

    Book  Google Scholar 

  12. Marcus RK, Broekaert JAC (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, Chichester

    Google Scholar 

  13. Harrison WW, Hess KR, Marcus RK, King FL (1986) Anal Chem 58:A341

    Article  Google Scholar 

  14. Duckworth DC, Marcus RK (1989) Anal Chem 61:1879–1886

    Article  CAS  Google Scholar 

  15. Marcus RK (1996) J Anal At Spectrom 11:821–828

    Article  CAS  Google Scholar 

  16. Reinsberg KG, Schumacher C, Tempez A, Nielsch K, Broekaert JAC (2012) Spectrochim Acta B 76:175–180

    Article  CAS  Google Scholar 

  17. Pisonero J, Bordel N, Gonzalez de Vega C, Fernandez B, Pereiro R, Sanz-Medel A (2013) Anal Bioanal Chem 405:5655–5662

    Article  CAS  Google Scholar 

  18. Alberici RM, Simas RC, Sanvido GB, Romao W, Lalli PM, Benassi M, Cunha IBS, Eberlin MN (2010) Anal Bioanal Chem 398:265–294

    Article  CAS  Google Scholar 

  19. Harris GA, Galhena AS, Fernandez FM (2011) Anal Chem 83:4508–4538

    Article  CAS  Google Scholar 

  20. Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z (2008) Anal Chem 80:9097–9104

    Article  CAS  Google Scholar 

  21. Kratzer J, Mester Z, Sturgeon RE (2011) Spectrochim Acta B 66:594–603

    Article  CAS  Google Scholar 

  22. Shelley JT, Wiley JS, Hieftje GM (2011) Anal Chem 83:5741–5748

    Article  CAS  Google Scholar 

  23. Webb MR, Hieftje GM (2009) Anal Chem 81:862–867

    Article  CAS  Google Scholar 

  24. Jamroz P, Greda K, Pohl P (2012) Trac-Trend Anal Chem 41:105–121

    Article  CAS  Google Scholar 

  25. He Q, Zhu Z, Hu S (2014) Appl Spectrosc Rev 49:249–269

    Article  CAS  Google Scholar 

  26. Cserfalvi T, Mezei P (1994) J Anal At Spectrom 9:345–349

    Article  CAS  Google Scholar 

  27. Mezei P, Cserfalvi T, Janossy M (1998) J Phys D Appl Phys 31:L41–L42

    Article  CAS  Google Scholar 

  28. Webb MR, Chan GCY, Andrade FJ, Gamez G, Hieftje GM (2006) J Anal At Spectrom 21:525–530

    Article  CAS  Google Scholar 

  29. Webb MR, Andrade FJ, Hieftje GM (2007) J Anal At Spectrom 22:775–782

    Article  CAS  Google Scholar 

  30. Webb MR, Andrade FJ, Hieftje GM (2007) Anal Chem 79:7899–7905

    Article  CAS  Google Scholar 

  31. Davis WC, Marcus RK (2001) J Anal At Spectrom 16:931–937

    Article  CAS  Google Scholar 

  32. Davis WC, Marcus RK (2002) Spectrochim Acta B 57:1473–1486

    Article  Google Scholar 

  33. Marcus RK, Davis WC (2001) Anal Chem 73:2903–2910

    Article  CAS  Google Scholar 

  34. Venzie JL, Marcus RK (2006) Spectrochim Acta B 61:715–721

    Article  Google Scholar 

  35. Manard BT, Gonzalez JJ, Sarkar A, Mao X, Zhang LX, Konegger-Kappel S, Marcus RK, Russo RE (2014) Spectrochimica Acta, Part B in press

  36. Marcus RK, Quarles CD Jr, Barinaga CJ, Carado AJ, Koppenaal DW (2011) Anal Chem 83:2425–2429

    Article  CAS  Google Scholar 

  37. Quarles CD Jr, Carado AJ, Barinaga CJ, Koppenaal DW, Marcus RK (2012) Anal Bioanal Chem 402:261–268

    Article  CAS  Google Scholar 

  38. Marcus RK, Burdette CQ, Manard BT, Zhang LX (2013) Anal Bioanal Chem 405:8171–8184

    Article  CAS  Google Scholar 

  39. Dean JA (1999) Lange’s Handbook of Chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  40. Liu C, Zhang X, Xiao S, Jia B, Cui S, Shi J, Xu N, Xie X, Gu H, Chen H (2012) Talanta 98:79–85

    Article  CAS  Google Scholar 

  41. Montoro Bustos AR, Ruiz Encinar J, Sanz-Medel A (2013) Anal Bioanal Chem 405:5637–5643

    Article  Google Scholar 

  42. Lagad RA, Alamelu D, Chaudhary AK, Aggarwal SK (2012) At Spectrosc 33:109–116

    CAS  Google Scholar 

  43. Boumans PWJM, Vrakking JJAM (1987) Spectrochim Acta B 42:819–840

    Article  Google Scholar 

  44. Boumans PWJM (1991) Spectrochim Acta B 46:431–445

    Article  Google Scholar 

  45. Boumans PWJM (1991) Spectrochim Acta B 46:917–939

    Article  Google Scholar 

  46. March RE, Todd JFG (1995) Practical aspects of ion trap mass spectrometry. CRC, Boca Raton

    Google Scholar 

  47. Bonnefoy C, Menudier A, Moesch C, Lachatre G, Mermet J-M (2002) J Anal At Spectrom 17:1161–1165

    Article  CAS  Google Scholar 

  48. Cserfalvi T, Mezei P (1996) Fresenius J Anal Chem 355:813–819

    CAS  Google Scholar 

  49. Schwartz AJ, Ray SJ, Elish E, Storey AP, Rubinstein AA, Chan GCY, Pfeuffer KP, Hieftje GM (2012) Talanta 102:26–33

    Article  CAS  Google Scholar 

  50. Manard BT, Gonzalez JJ, Sarker A, Dong M, Chirinos JR, Chirions JR, Xianglei M, Russo RE, Marcus RK (2014) Spectrochim Acta B 94:39–47

    Article  Google Scholar 

  51. Venter AR, Douglass KA, Shelley JT, Hasma G Jr, Nonarvar E (2014) Anal Chem 86:233–246

    Article  CAS  Google Scholar 

  52. Cole RB (ed) (2010) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Wiley, Hoboken

    Google Scholar 

  53. Alkemade CTJ, Hollander T, Snelleman W, Zeegers PJT (1982) Metal vapours in flames. Pergamon, Oxford

    Google Scholar 

  54. Mavrodineanu R, Boiteux H (1965) Flame spectroscopy. Wiley, New York

    Google Scholar 

  55. Blades MW, Horlick G (1981) Spectrochim Acta B 36:881–900

    Article  Google Scholar 

  56. Vickers GH, Wilson DA, Hieftje GM (1990) Spectrochim Acta B 45:499–509

    Article  Google Scholar 

  57. Holliday AE, Beauchemin D (2004) Spectrochim Acta B 59:291–311

    Article  Google Scholar 

  58. Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Anal Chem 52:2283–2289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-14-1-0010, to Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kenneth Marcus.

Additional information

Published in the topical collection Emerging Concepts and Strategies in Analytical Glow Discharges with guest editors Rosario Pereiro and Steven Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L.X., Manard, B.T., Kappel, S.K. et al. Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry. Anal Bioanal Chem 406, 7497–7509 (2014). https://doi.org/10.1007/s00216-014-7990-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7990-6

Keywords

Navigation