Skip to main content
Log in

Accuracy of electronic density calculated using an optimally tuned range-separated hybrid functional

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We provide a quantitative study of the accuracy of the electronic density calculated using density functional theory. Specifically, we consider the recently developed optimally tuned range-separated hybrid (OT-RSH) functional approach. We calculate dipole moments using OT-RSH functional across a database of 152 polar molecules and compare them to literature coupled-cluster calculations with single and double excitations and perturbative triples (CCSD(T)) data. We also consider another test set of 14 closed-shell diatomic molecules to quantify the performance of OT-RSH functional in predicting the electronic densities using CCSD densities as a reference. We find that OT-RSH functional-derived electronic densities and dipole moments are as accurate as some better performing global hybrid functionals. Also, OT-RSH overcomes the empiricism and limited predictive power associated with the arbitrary choice of the amount of Fock exchange in the traditional global hybrid functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cohen AJ, Mori-Sánchez P, Yang W (2011) Challenges for density functional theory. Chem. Rev. 112:289

    Article  Google Scholar 

  2. Burke K (2012) Perspective on density functional theory. J. Chem. Phys. 136:150901. https://doi.org/10.1063/1.4704546

    Article  CAS  Google Scholar 

  3. Pribram-Jones A, Gross DA, Burke K (2015) Dft: a theory full of holes? Annu. Rev. Phys. Chem. 66:283. https://doi.org/10.1146/annurev-physchem-040214-121420

    Article  CAS  Google Scholar 

  4. Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87:897. https://doi.org/10.1103/RevModPhys.87.897

    Article  Google Scholar 

  5. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys. Rev. 136:B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  6. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  7. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115:2315

    Article  CAS  Google Scholar 

  8. Su NQ, Xu X (2017) Development of new density functional approximations. Annu. Rev. Phys. Chem. 68:155

    Article  CAS  Google Scholar 

  9. Yu HS, Li SL, Truhlar DG (2016) Perspective: Kohn–Sham density functional theory descending a staircase. J. Chem. Phys. 145:130901

    Article  Google Scholar 

  10. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Density functional theory is straying from the path toward the exact functional. Science 355:49

    Article  CAS  Google Scholar 

  11. Ranasinghe DS, Perera A, Bartlett RJ (2017) A note on the accuracy of ks-dft densities. J. Chem. Phys. 147:204103. https://doi.org/10.1063/1.5001939

    Article  CAS  Google Scholar 

  12. Verma P, Truhlar DG (2017) Can kohn-sham density functional theory predict accurate charge distributions for both single-reference and multi-reference molecules? Phys. Chem. Chem. Phys. 19:12898

    Article  CAS  Google Scholar 

  13. Elmaslmane A, Wetherell J, Hodgson M, McKenna K, Godby R (2018) Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals. Phys. Rev. Mater. 2:040801

    Article  CAS  Google Scholar 

  14. Su NQ, Zhu Z, Xu X (2018) Doubly hybrid density functionals that correctly describe both density and energy for atoms. Proc. Natl. Acad. Sci. 115:2287. https://doi.org/10.1073/pnas.1713047115

    Article  CAS  Google Scholar 

  15. Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput. 8:1515

    Article  CAS  Google Scholar 

  16. Savin A (1995) Beyond the Kohn–Sham determinant. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, pp 129–153. https://doi.org/10.1142/9789812830586_0004

    Chapter  Google Scholar 

  17. Savin A, Flad H-J (1995) Density functionals for the Yukawa electron-electron interaction. Int. J. Quantum Chem. 56:327

    Article  CAS  Google Scholar 

  18. Leininger T, Stoll H, Werner H-J, Savin A (1997) Combining long-range configuration interaction with short-range density functionals. Chem. Phys. Lett. 275:151

    Article  CAS  Google Scholar 

  19. Koopmans T (1934) über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  20. Almbladh C-O, von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys. Rev. B 31:3231. https://doi.org/10.1103/PhysRevB.31.3231

    Article  CAS  Google Scholar 

  21. Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J. Am. Chem. Soc. 131:2818

    Article  CAS  Google Scholar 

  22. Stein T, Kronik L, Baer R (2009) Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J. Chem. Phys. 131:244119

    Article  Google Scholar 

  23. Egger DA, Weissman S, Refaely-Abramson S, Sharifzadeh S, Dauth M, Baer R, Kümmel S, Neaton JB, Zojer E, Kronik L (2014) Outer-valence electron spectra of prototypical aromatic heterocycles from an optimally tuned range-separated hybrid functional. J. Chem. Theory Comput. 10:1934

    Article  CAS  Google Scholar 

  24. Refaely-Abramson S, Sharifzadeh S, Govind N, Autschbach J, Neaton JB, Baer R, Kronik L (2012) Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. Phys. Rev. Lett. 109:226405. https://doi.org/10.1103/PhysRevLett.109.226405

    Article  CAS  Google Scholar 

  25. Srebro M, Autschbach J (2012) Does a molecule-specific density functional give an accurate electron density? The challenging case of the cucl electric field gradient. J. Phys. Chem. Lett. 3:576

    Article  CAS  Google Scholar 

  26. Körzdörfer T, Parrish RM, Sears JS, Sherrill CD, Brédas J-L (2012) On the relationship between bond-length alternation and many-electron self-interaction error. J. Chem. Phys. 137:124305

    Article  Google Scholar 

  27. Sarkar S, Kronik L (2016) Ionisation and (de-) protonation energies of gas-phase amino acids from an optimally tuned range-separated hybrid functional. Mol. Phys. 114:1218

    Article  CAS  Google Scholar 

  28. Hait D, Head-Gordon M (2018) How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values. J. Chem. Theory Comput. 14:1969

    Article  CAS  Google Scholar 

  29. Brorsen KR, Yang Y, Pak MV, Hammes-Schiffer S (2017) Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated? J. Phys. Chem. Lett. 8:2076

    Article  CAS  Google Scholar 

  30. Mezei PD, Csonka GI, Kállay M (2017) Electron density errors and density-driven exchange-correlation energy errors in approximate density functional calculations. J. Chem. Theory Comput. 13:4753. https://doi.org/10.1021/acs.jctc.7b00550

    Article  CAS  Google Scholar 

  31. Brémond E, Tognetti V, Chermette H, Sancho-García JC, Joubert L, Adamo C (2022) Electronic energy and local property errors at qtaim critical points while climbing perdew’s ladder of density-functional approximations. J. Chem. Theory Comput. 18:293. https://doi.org/10.1021/acs.jctc.1c00981

    Article  CAS  Google Scholar 

  32. Kossaka Macedo G, Haiduke RLA (2022) The performance of exchange-correlation functionals in describing electron density parameters of saddle point structures along chemical reactions. J. Comput. Chem. 43:1830. https://doi.org/10.1002/jcc.26985

    Article  CAS  Google Scholar 

  33. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp). Chem. Phys. Lett. 393:51

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  35. Baer R, Livshits E, Salzner U (2010) Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61:85. https://doi.org/10.1146/annurev.physchem.012809.103321

    Article  CAS  Google Scholar 

  36. Rohrdanz MA, Martins KM, Herbert JM (2009) A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J. Chem. Phys. 130:054112

    Article  Google Scholar 

  37. Lüftner D, Refaely-Abramson S, Pachler M, Resel R, Ramsey MG, Kronik L, Puschnig P (2014) Experimental and theoretical electronic structure of quinacridone. Phys. Rev. B 90:075204. https://doi.org/10.1103/PhysRevB.90.075204

    Article  CAS  Google Scholar 

  38. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys 96:6796. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  39. CCSD reference densities were obtained from Kurt Brorsen and Sharon Hammes–Schiffer

  40. Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 4572:103. https://doi.org/10.1063/1.470645

    Article  Google Scholar 

  41. Joo B, Han H, Kim E-G (2018) Solvation-mediated tuning of the range-separated hybrid functional: self-sufficiency through screened exchange. J. Chem. Theory Comput. 14:2823. https://doi.org/10.1021/acs.jctc.8b00049

    Article  CAS  Google Scholar 

  42. Refaely-Abramson S, Sharifzadeh S, Jain M, Baer R, Neaton JB, Kronik L (2013) Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 88:081204. https://doi.org/10.1103/PhysRevB.88.081204

    Article  CAS  Google Scholar 

  43. Brumboiu IE, Prokopiou G, Kronik L, Brena B (2017) Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional. J. Chem. Phys. 147:044301

    Article  Google Scholar 

  44. Prokopiou G, Kronik L (2018) Spin-state energetics of fe complexes from an optimally tuned range-separated hybrid functional. Chem. Eur. J. 24:5173. https://doi.org/10.1002/chem.201704014

    Article  CAS  Google Scholar 

  45. Brémond E, Pérez-Jiménez AJ, Sancho-García JC, Adamo C (2020) Range-separated hybrid and double-hybrid density functionals: a quest for the determination of the range-separation parameter. J. Chem. Phys. 152:244124. https://doi.org/10.1063/5.0010976

    Article  CAS  Google Scholar 

  46. Mussard B, Toulouse J (2017) Fractional-charge and fractional-spin errors in range-separated density-functional theory. Mol. Phys. 115:161. https://doi.org/10.1080/00268976.2016.1213910

    Article  CAS  Google Scholar 

  47. Prokopiou G, Hartstein M, Govind N, Kronik L (2022) Optimal tuning perspective of range-separated double hybrid functionals. J. Chem. Theory Comput. 18:2331. https://doi.org/10.1021/acs.jctc.2c00082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author sincerely thanks Prof. Leeor Kronik and Weizmann Institute of Science, Israel, for providing computing resources required in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S. Accuracy of electronic density calculated using an optimally tuned range-separated hybrid functional. Theor Chem Acc 142, 7 (2023). https://doi.org/10.1007/s00214-022-02952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02952-z

Keywords

Navigation