Skip to main content
Log in

Stability and catalytic properties of Pt–Ni clusters supported on pyridinic N-doped graphene nanoflakes: an auxiliary density functional theory study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A first-principles theoretical study employing auxiliary density functional theory was performed to investigate the stability and catalytic activity of Pt4−nNin (n = 0–3) clusters supported on pyridinic N3-doped graphene (PNG) nanoflakes. First, the stability of the tetrahedral Pt4−nNin (n = 0–3) clusters supported on PNG nanoflakes was investigated. After, the O adsorption on Pt4−nNin (n = 0–3) clusters supported on PNG nanoflakes was studied as prototype systems to investigate the catalytic activity of PtNi alloy clusters supported on PNG nanoflakes for the oxygen reduction reaction (ORR). The computed interaction energy between the Pt4−nNin (n = 1–3) clusters and the PNG nanoflakes is higher than the one of the Pt4 cluster supported on the PNG nanoflake. According to the obtained oxygen adsorption energies, Pt4−nNin (n = 1–3) alloy clusters supported on PNG nanoflakes could be better candidates for the ORR than the Pt4 cluster supported on PNG nanoflakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  PubMed  Google Scholar 

  2. Cruz-Martinez H, Rojas-Chávez H, Matadamas-Ortiz PT, Ortiz-Herrera JC, López-Chávez E, Solorza-Feria O, Medina DI (2021) Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater Today Phys 19:100406

    Article  CAS  Google Scholar 

  3. Cruz-Martínez H, Tellez-Cruz MM, Guerrero-Gutiérrez OX, Ramírez-Herrera CA, Salinas-Juárez MG, Velázquez-Osorio A, Solorza-Feria O (2019) Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells. Int J Hydrog Energy 44:12477–12491

    Article  CAS  Google Scholar 

  4. Jacob T (2006) The mechanism of forming H2O from H2 and O2 over a Pt catalyst via direct oxygen reduction. Fuel Cells 6:159–181

    Article  CAS  Google Scholar 

  5. Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657

    Article  CAS  PubMed  Google Scholar 

  6. Yu P, Pemberton M, Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J Power Sources 144:11–20

    Article  CAS  Google Scholar 

  7. Wu J, Yang H (2013) Platinum-based oxygen reduction electrocatalysts. Acc Chem Res 46:1848–1857

    Article  CAS  PubMed  Google Scholar 

  8. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202

    Article  CAS  PubMed  Google Scholar 

  9. Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P (2012) Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett 12:5885–5889

    Article  CAS  PubMed  Google Scholar 

  10. Choi SI, Xie S, Shao M, Odell JH, Lu N, Peng HC, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim MJ, Xia Y (2013) Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett 13:3420–3425

    Article  CAS  PubMed  Google Scholar 

  11. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115:3433–3467

    Article  CAS  PubMed  Google Scholar 

  12. Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B 123:52–68

    Article  CAS  Google Scholar 

  13. Zhou X, Qiao J, Yang L, Zhang J (2014) A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv Energy Mater 4:1301523

    Article  CAS  Google Scholar 

  14. Kong XK, Chen CL, Chen QW (2014) Doped graphene for metal-free catalysis. Chem Soc Rev 43:2841–2857

    Article  CAS  PubMed  Google Scholar 

  15. Montejo-Alvaro F, Rojas-Chávez H, Román-Doval R, Mtz-Enriquez AI, Cruz-Martínez H, Medina DI (2019) Stability of Pd clusters supported on pristine, B-doped, and defective graphene quantum dots, and their reactivity toward oxygen adsorption: a DFT analysis. Solid State Sci 93:55–61

    Article  CAS  Google Scholar 

  16. Montejo-Alvaro F, Rojas-Chávez H, Herrera-Rivera R, Mtz-Enriquez AI, Cruz-Martínez H, Medina DI (2020) Investigating the stability of icosahedral Ni13–xCux (x= 1–12) bimetallic nanoclusters supported on defective graphene: insights from first-principles calculations. Physica E 118:113880

    Article  CAS  Google Scholar 

  17. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28:9532–9538

    Article  CAS  PubMed  Google Scholar 

  18. Tian Y, Liu YJ, Zhao JX, Ding YH (2015) High stability and superior catalytic reactivity of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for the oxygen reduction reaction: a density functional theory study. RSC Adv 5:34070–34077

    Article  CAS  Google Scholar 

  19. Jalili S, Goliaei EM, Schofield J (2017) Silver cluster supported on nitrogen-doped graphene as an electrocatalyst with high activity and stability for oxygen reduction reaction. Int J Hydrog Energy 42:14522–14533

    Article  CAS  Google Scholar 

  20. Wang Q, Tian Y, Chen G, Zhao J (2017) Theoretical insights into the energetics and electronic properties of MPt12 (M= Fe Co, Ni, Cu, and Pd) nanoparticles supported by N-doped defective graphene. Appl Surf Sci 397:199–205

    Article  CAS  Google Scholar 

  21. Gracia-Espino E, Jia X, Wågberg T (2014) Improved oxygen reduction performance of Pt–Ni nanoparticles by adhesion on nitrogen-doped graphene. J Phys Chem C 118:2804–2811

    Article  CAS  Google Scholar 

  22. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Domínguez-Soria VD, Flores-Moreno, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vásquez-Péres JM, Vela A, Zúninga-Gutierrez B, Salahub DR (2012) DeMon2k. Wiley Interdiscip Rev: Comput Mol Sci 2:548–555

    CAS  Google Scholar 

  23. Calaminici P, Alvarez-Ibarra A, Cruz-Olvera D, Domínguez-Soria VD, Flores-Moreno R, Gamboa-Martínez GU, Geudtner G, Goursot A, Mejía-Rodríguez D, Salahub DR, Zuniga-Gutierrez B, Köster AM (2015) Auxiliary density functional theory: from molecules to nanostructures. In: Leszczynski J et al (eds) Handbook of computational chemistry. Springer, Dordrecht, pp 1–67

    Google Scholar 

  24. Galindo-Uribe CD, Calaminici P, Cruz-Martínez H, Cruz-Olvera D, Solorza-Feria O (2021) First-principle study of the structures, growth pattern, and properties of (Pt3Cu)n, n= 1–9, clusters. J Chem Phys 154:154302

    Article  CAS  PubMed  Google Scholar 

  25. Cruz-Martínez H, Cervantes-Flores A, Solorza-Feria O, Medina DI, Calaminici P (2021) On the growth behavior, structures, energy, and magnetic properties of bimetallic MnPdn (M = Co, Ni; n = 1–10) clusters. Theor Chem Acc 140:45

    Article  CAS  Google Scholar 

  26. Cervantes-Flores A, Cruz-Martínez H, Solorza-Feria O, Calaminici P (2017) A first-principles study of NinPdn (n= 1–5) clusters. J Mol Model 23:161

    Article  PubMed  CAS  Google Scholar 

  27. Pérez-Figueroa SE, Calaminici P, Koster AM (2019) Hybrid ADFT study of the C104 and C106 IPR Isomers. J Phys Chem A 123:4565–4574

    Article  PubMed  CAS  Google Scholar 

  28. Sánchez-Rodríguez EP, Vargas-Hernández CN, Cruz-Martínez H, Medina DI (2021) Stability, magnetic, energetic, and reactivity properties of icosahedral M@Pd12 (M= Fe Co, Ni, and Cu) core-shell nanoparticles supported on pyridinic N3-doped graphene. Solid State Sci 112:106483

    Article  CAS  Google Scholar 

  29. Martínez-Espinosa JA, Cruz-Martínez H, Calaminici P, Medina DI (2021) Structures and properties of Co13−xCux (x= 0–13) nanoclusters and their interaction with pyridinic N3-doped graphene nanoflake. Physica E 134:114858

    Article  CAS  Google Scholar 

  30. Köster AM, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida ME, Carmona-Espindola J, Dominguez VD, Flores-Moreno R, Gamboa GU, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo JM, Mejia-Rodriguez D, Reveles JU, Vasquez-Perez J, Vela A, Zuniga-Gutierrez B, Salahub DR (2018) deMon2k, Version 6, The deMon developers. Cinvestav, Mexico City

    Google Scholar 

  31. Zhang Y, Yang W (1998) Comment on “Generalized gradient approximation made simple.” Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  33. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J Chem Phys 126:044108

    Article  PubMed  CAS  Google Scholar 

  34. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Article  CAS  PubMed  Google Scholar 

  35. Dunlap BI, Connolly JWD, Sabin JR (1979) On first-row diatomic molecules and local density models. J Chem Phys 71:4993–4999

    Article  CAS  Google Scholar 

  36. Mintmire JW, Dunlap BI (1982) Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations. Phys Rev A 25:88

    Article  CAS  Google Scholar 

  37. Köster AM, Reveles JU, del Campo JM (2004) Calculation of exchange-correlation potentials with auxiliary function densities. J Chem Phys 121:3417–3424

    Article  PubMed  CAS  Google Scholar 

  38. Reveles JU, Köster AM (2004) Geometry optimization in density functional methods. J Comput Chem 25:1109–1116

    Article  CAS  PubMed  Google Scholar 

  39. Zhou X, Chu W, Sun W, Zhou Y, Xue Y (2017) Enhanced interaction of nickel clusters with pyridinic-N (B) doped graphene using DFT simulation. Comput Theor Chem 1120:8–16

    Article  CAS  Google Scholar 

  40. Alonso-Lanza T, Mañanes A, Ayuela A (2017) Interaction of cobalt atoms, dimers, and Co4 clusters with circumcoronene: a theoretical study. J Phys Chem C 121:18900–18908

    Article  CAS  Google Scholar 

  41. Nieman R, Aquino AJ, Lischka H (2021) Exploration of graphene defect reactivity toward a hydrogen radical utilizing a preactivated circumcoronene model. J Phys Chem A 125:1152–1165

    Article  CAS  PubMed  Google Scholar 

  42. Muñoz-Castro A, Gomez T, Carey DM, Miranda-Rojas S, Mendizabal F, Zagal JH, Arratia-Perez R (2016) Surface on surface. Survey of the monolayer gold–graphene interaction from Au12 and PAH via relativistic DFT calculations. J Phys Chem C 120:7358–7364

    Article  CAS  Google Scholar 

  43. Lian X, Guo W, Liu F, Yang Y, Xiao P, Zhang Y, Tian W (2015) DFT studies on Pt3M (M= Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation. Comput Mater Sci 96:237–245

    Article  CAS  Google Scholar 

  44. Niu J, Ran J, Ou Z, Du X, Wang R, Qi W, Zhang P (2016) CO2 dissociation over PtxNi4−x bimetallic clusters with and without hydrogen sources: a density functional theory study. J CO2 Util 16:431–441

    Article  CAS  Google Scholar 

  45. Liu S, Huang S (2017) Theoretical insights into the activation of O2 by Pt single atom and Pt4 nanocluster on functionalized graphene support: critical role of Pt positive polarized charges. Carbon 115:11–17

    Article  CAS  Google Scholar 

  46. Błoński P, Hafner J (2011) Geometric and magnetic properties of Pt clusters supported on graphene: relativistic density-functional calculations. J Chem Phys 134:154705

    Article  PubMed  CAS  Google Scholar 

  47. Rêgo CR, Tereshchuk P, Oliveira LN, Da Silva JL (2017) Graphene-supported small transition-metal clusters: a density functional theory investigation within van der Waals corrections. Phys Rev B 95:235422

    Article  Google Scholar 

  48. Montejo-Alvaro F, Oliva J, Zarate A, Herrera-Trejo M, Hdz-García HM, Mtz-Enriquez AI (2019) Icosahedral transition metal clusters (M13, M= Fe, Ni, and Cu) adsorbed on graphene quantum dots, a DFT study. Physica E 110:52–58

    Article  CAS  Google Scholar 

  49. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  50. Stamenkovic V, Mun BS, Mayrhofer KJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem 118:2963–2967

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the funding resources provided by the Tecnológico Nacional de México (TecNM) through the Grant Numbers 10800.21-P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Cruz-Martínez or P. Calaminici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Martínez, H., Rojas-Chávez, H., Valdés-Madrigal, M.A. et al. Stability and catalytic properties of Pt–Ni clusters supported on pyridinic N-doped graphene nanoflakes: an auxiliary density functional theory study. Theor Chem Acc 141, 46 (2022). https://doi.org/10.1007/s00214-022-02904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02904-7

Keywords

Navigation