Skip to main content
Log in

Charge transfer excitations and constrained density functional theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Making use of the initial and final Fukui functions approximated by the charge density of the initial (occupied) orbital and the final (unoccupied in the ground state) orbital to identify the charge transfer excitations in a time-dependent density functional theory calculation, and the acceptance and donation regions, we analyze the performance of constrained density functional theory to predict the excitation energies by considering several alternatives to fix the amount of charge transferred. It is shown that charge transfer excitations energies may be accurately determined through this approach when one fixes the final charge in the acceptance region to a value that complements the net charge already present to minus one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138

    Article  Google Scholar 

  2. Hohenberg P, Kohn W (1964) Phys Rev B 136:B864–B871

    Article  Google Scholar 

  3. Parr RG, Yang WT (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  4. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin

    Book  Google Scholar 

  5. Perdew JP, Kurth S (2003) Density functionals for non-relativistic coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques MAL (eds) A Primer in Density Functional Theory. Springer, Berlin, pp 1–55

    Google Scholar 

  6. Perdew JP, Ruzsinszky A, Tao JM, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123:062201

    Article  Google Scholar 

  7. Scuseria GE, Staroverov VN (2005) Progress in the development of exchange-correlation functionals. In: Dykstra C, Frenking G, Kim KS, Scuseria GE (eds) Theory and Applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 669–724

    Chapter  Google Scholar 

  8. Engel E, Dreizler RM (2011) Density functional theory. Springer-Verlag, Berlin

    Book  Google Scholar 

  9. Burke K (2012). J Chem Phys 136:150901.

  10. Cohen AJ, Mori-Sanchez P, Yang WT (2012) Chem Rev 112:289–320

    Article  CAS  PubMed  Google Scholar 

  11. Becke AD (2014) J Chem Phys 140:18A301

    Article  PubMed  Google Scholar 

  12. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  13. Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario JM (ed) Recent developments and applications of modern density functional theory. Theoretical and computational chemistry. Elsevier, Amsterdam, pp 391–439

    Chapter  Google Scholar 

  14. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212–1215

    Article  CAS  PubMed  Google Scholar 

  15. Marques MAL, Gross EKU (2004) Ann Rev Phys Chem 55:427–455

    Article  CAS  Google Scholar 

  16. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (eds) (2006) Time dependent density functional theory. Springer-Verlag, Berlin

    Google Scholar 

  17. Ullrich CA (2012) Time dependent density functional theory: concepts and applications. Oxford University Press, New York

    Google Scholar 

  18. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  19. Tozer DJ, Handy NC (1998) J Chem Phys 109:10180–10189

    Article  CAS  Google Scholar 

  20. Casida ME, Salahub DR (2000) J Chem Phys 113:8918–8935

    Article  CAS  Google Scholar 

  21. Gritsenko O, Baerends EJ (2004) J Chem Phys 121:655–660

    Article  CAS  PubMed  Google Scholar 

  22. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037

    Article  CAS  PubMed  Google Scholar 

  23. Neugebauer J, Gritsenko O, Baerends EJ (2006) J Chem Phys 124

  24. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  25. Carmona-Espíndola J, Gázquez JL, Vela A, Trickey SB (2015) J Chem Phys 142:054105

    Article  PubMed  Google Scholar 

  26. Carmona-Espíndola J, Gázquez JL, Vela A, Trickey SB (2019) J Chem Theory Comput 15:303–310

    Article  PubMed  Google Scholar 

  27. Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506

    Article  PubMed  Google Scholar 

  28. Ciofini I, Le Bahers T, Adamo C, Odobel F, Jacquemin D (2012) J Phys Chem C 116:11946–11955

    Article  CAS  Google Scholar 

  29. Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) Phys Chem Chem Phys 14:5383–5388

    Article  CAS  PubMed  Google Scholar 

  30. Le Bahers T, Bremond E, Ciofini I, Adamo C (2014) Phys Chem Chem Phys 16:14435–14444

    Article  PubMed  Google Scholar 

  31. Adamo C, Le Bahers T, Savarese M, Wilbraham L, Garcia G, Fukuda R, Ehara M, Rega N, Ciofini I (2015) Coord Chem Rev 304:166–178

    Article  Google Scholar 

  32. Wu Q, Van Voorhis T (2005) Phys Rev A 72

  33. Wu Q, Van Voorhis T (2006) J Chem Theory Comput 2:765–774

    Article  CAS  PubMed  Google Scholar 

  34. de la Lande A, Salahub DR (2010) J Mol Struct Theochem 943:115–120

    Article  Google Scholar 

  35. Van Voorhis T, Kowalczyk T, Kaduk B, Wang LP, Cheng CL, Wu Q (2010) The Diabatic Picture of Electron Transfer, Reaction Barriers, and Molecular Dynamics. In: Leone SR, Cremer PS, Groves JT, Johnson MA, Richmond G (Eds.) Annual Review of Physical Chemistry, vol 61. Annual review of physical chemistry. pp 149–170

  36. Kaduk B, Kowalczyk T, Van Voorhis T (2012) Chem Rev 112:321–370

    Article  CAS  PubMed  Google Scholar 

  37. Carmona-Espíndola J, Gázquez JL (2021) Theor Chem Acc 140:96

    Article  Google Scholar 

  38. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  39. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  PubMed  Google Scholar 

  40. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quant Chem 101:520–534

    Article  CAS  Google Scholar 

  41. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

    Article  CAS  PubMed  Google Scholar 

  42. Chattaraj PK, Roy DR (2007) Chem Rev 107:PR46–PR74

    Article  CAS  Google Scholar 

  43. Gázquez JL (2008) J Mex Chem Soc 52:3–10

    Google Scholar 

  44. Chattaraj Ed PK (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Liu SB (2009) Acta Phys-Chim Sin 25:590–600

    Article  CAS  Google Scholar 

  46. Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111:PR43–PR75

    Article  PubMed  Google Scholar 

  47. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT". In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764

    Google Scholar 

  48. Fuentealba P, Cardenas C (2015) Density functional theory of chemical reactivity. In: Michael Springborg J-OJ (Eds.) Chemical Modelling: Volume 11, vol 11. The Royal Society of Chemistry, pp 151–174.

  49. Geerlings P, Chamorro E, Chattaraj PK, De Proft F, Gázquez JL, Liu SB, Morell C, Toro-Labbe A, Vela A, Ayers P (2020) Theor Chem Acc 139:36

    Article  CAS  Google Scholar 

  50. Parr RG, Yang WT (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  51. Yang WT, Parr RG, Pucci R (1984) J Chem Phys 81:2862–2863

    Article  CAS  Google Scholar 

  52. Ayers PW, Levy M (2000) Theor Chem Acc 103:353–360

    Article  CAS  Google Scholar 

  53. Morell C, Grand A, Toro-Labbe A (2005) J Phys Chem A 109:205–212

    Article  CAS  PubMed  Google Scholar 

  54. Morell C, Grand A, Toro-Labbe A (2006) Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  55. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  56. Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84:5172–5175

    Article  CAS  PubMed  Google Scholar 

  57. Zhang YK, Yang WT (2000) Theor Chem Acc 103:346–348

    Article  CAS  Google Scholar 

  58. Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2015) J Chem Phys 143:244117

    Article  PubMed  Google Scholar 

  59. Gázquez JL, Franco-Pérez M, Ayers PW, Vela A (2019) Int J Quant Chem 119:e25797

    Article  Google Scholar 

  60. Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  61. Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) Phys Chem Chem Phys 15:14465–14475

    Article  CAS  PubMed  Google Scholar 

  62. De Proft F, Forquet V, Ourri B, Chermette H, Geerlings P, Morell C (2015) Phys Chem Chem Phys 17:9359–9368

    Article  PubMed  Google Scholar 

  63. Merzoud L, Saal A, Morell C, Chermette H (2019) J Phys Chem A 123:10730–10738

    Article  CAS  PubMed  Google Scholar 

  64. Guegan F, Pigeon T, De Proft F, Tognetti V, Joubert L, Chermette H, Ayers PW, Luneau D, Morell C (2020) J Phys Chem A 124:633–641

    Article  CAS  PubMed  Google Scholar 

  65. Yang WT, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  PubMed  Google Scholar 

  66. Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) J Chem Phys 127:034102

    Article  PubMed  Google Scholar 

  67. Grochala W, Albrecht AC, Hoffmann R (2000) J Phys Chem A 104:2195–2203

    Article  CAS  Google Scholar 

  68. Ayers PW, Parr RG (2000) J Phys Chem A 104:2211–2220

    Article  CAS  Google Scholar 

  69. Morell C, Labet V, Grand A, Ayers PW, De Proft F, Geerlings P, Chermette H (2009) J Chem Theory Comput 5:2274–2283

    Article  CAS  PubMed  Google Scholar 

  70. Piedras A, Gómez B, Carmona-Espíndola J, Arroyo R, Gázquez JL (2016) Theor Chem Acc 135

  71. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Dominguez-Soria VD, Flores-Moreno R, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vasquez-Perez JM, Vela A, Zuñiga-Gutierrez B, Salahub DR (2012) Wiley Interdiscip Rev Comput Mol Sci 2:548

    Article  CAS  Google Scholar 

  72. Rezac J, Levy B, Demachy I, de la Lande A (2012) J Chem Theory Comput 8:418–427

    Article  CAS  PubMed  Google Scholar 

  73. Mangaud E, de la Lande A, Meier C, Desouter-Lecomte M (2015) Phys Chem Chem Phys 17:30889–30903

    Article  CAS  PubMed  Google Scholar 

  74. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  75. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  76. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  77. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  78. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  79. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  80. Harihara PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  Google Scholar 

  81. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  82. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  83. Calaminici P, Janetzko F, Köster AM, Mejía-Olvera R, Zúniga-Gutiérrez B (2007) J Chem Phys 126:044108

    Article  PubMed  Google Scholar 

  84. Köster AM, Flores-Moreno R, Reveles JU (2004) J Chem Phys 121:681–690

    Article  PubMed  Google Scholar 

  85. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  86. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  87. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  88. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899

    Article  CAS  Google Scholar 

  89. Kosenkov D, Slipchenko LV (2011) J Phys Chem A 115:392–401

    Article  CAS  PubMed  Google Scholar 

  90. Millefiori S, Favini G, Millefiori A, Grasso D (1977) Spectrochim Acta A Mol 33:21–27

    Article  Google Scholar 

  91. Moghimi A (2012) J Chem Health Risks 2(3):21–28

    Google Scholar 

  92. Georgieva I, Aquino AJA, Plasser F, Trendafilova N, Kohn A, Lischka H (2015) J Phys Chem A 119:6232–6243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zachariasse KA (1993) Pure Appl Chem 65:1745–1750

    Article  CAS  Google Scholar 

  94. Ma C, Kwok WM, Matousek P, Parker AW, Phillips D, Toner WT, Towrie M (2002) J Phys Chem A 106:3294–3305

    Article  CAS  Google Scholar 

  95. Granucci G, Hynes JT, Millie P, Tran-Thi TH (2000) J Am Chem Soc 122:12243–12253

    Article  CAS  Google Scholar 

  96. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Laboratorio Nacional de Cómputo de Alto Desempeño for the use of their facilities through the Laboratorio de Supercómputo y Visualización of Universidad Autónoma Metropolitana-Iztapalapa. We also thank Conacyt for grant sinergia 1561802.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Carmona-Espíndola or José L. Gázquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Espíndola, J., Gázquez, J.L. Charge transfer excitations and constrained density functional theory. Theor Chem Acc 141, 1 (2022). https://doi.org/10.1007/s00214-021-02860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02860-8

Keywords

Navigation