Skip to main content
Log in

Mechanism of thermolysis of hydroxylamino-dinitroethylenes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Promising energetic materials—1,1-diamino-2,2-dinitroethylene (DADNE) derivatives in which one or both hydrogen atoms of the amino group are substituted by the OH group were studied by quantum chemical methods using PBE0 hybrid functional with the cc-pVDZ basis set and the coupled cluster method on the CCSD/aug-cc-pVDZ level. A series of primary steps of thermolysis were studied, and it has been shown that introduction of the hydroxyl group leads to a change in the mechanism of the rate-determining step. In contrast to the DADNE, for hydroxyl derivatives a number of additional reactions involving the hydroxyl group are possible and the rate-determining stage of thermolysis is the reaction of transfer of the H atom from -OH group to a carbon atom. At the same time, the activation enthalpy decreases sharply from 200 for DADNE to 110 kJ mol–1 for mono- and 90 kJ mol–1 for disubstituted DADNE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 3
Fig. 4
Fig. 5
Scheme 8
Scheme 9
Fig. 6
Scheme 10
Scheme 11
Fig. 7
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54(38):11525–11536. https://doi.org/10.1016/S0040-4020(98)00673-5

    Article  CAS  Google Scholar 

  2. Bellamy AJ (2007) FOX-7 (1,1-diamino-2,2-dinitroethene). High Energy Density Materials, Klapötke TM (Vol. Ed.), Mingos DMP (Series Ed.), in Structure and Bonding 125:1–33. https://doi.org/10.1007/430_2006_054

  3. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1–2):1–15. https://doi.org/10.1016/j.jhazmat.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Trzciński WA, Cudziło S, Chyłek Z, Szymańczyk L (2008) Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). J Hazard Mater 157(2–3):605–612. https://doi.org/10.1016/j.jhazmat.2008.01.026

    Article  CAS  PubMed  Google Scholar 

  5. Nair UR, Asthana SN, Subhananda Rao A, Gandhe BR (2010) Advances in high energy materials. Def Sci J 60(2):137–151. https://doi.org/10.14429/dsj.60.327

    Article  CAS  Google Scholar 

  6. Liu Y, Li F, Sun H (2014) Thermal decomposition of FOX-7 studied by ab initio molecular dynamics simulations. Theoret Chem Acc 133(10):1567. https://doi.org/10.1007/s00214-014-1567-5

    Article  CAS  Google Scholar 

  7. Jiang H, Jiao Q, Zhang C (2018) Early events when heating 1,1-diamino-2,2-dinitroethylene: self-consistent charge density-functional tight-binding molecular dynamics simulations. J Phys Chem C 122(27):15125–15132. https://doi.org/10.1021/acs.jpcc.8b03691

    Article  CAS  Google Scholar 

  8. Burnham AK, Weese RK, Wang R, Kwok QSM, Jones DEG (2005) Thermal properties of FOX-7. In: 35th International annual conference of ICT, Karlsruhe

  9. Gindulyte A, Massa L, Huang L, Karle J (1999) Proposed mechanism of 1,1-diamino-dinitroethylene decomposition: a density functional theory study. J Phys Chem A 103(50):11045–11051. https://doi.org/10.1021/jp991794a

    Article  CAS  Google Scholar 

  10. Kiselev VG, Gritsan NP (2014) Unexpected primary reactions for thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) revealed by ab initio calculations. J Phys Chem A 118(36):8002–8008. https://doi.org/10.1021/jp507102x

    Article  CAS  PubMed  Google Scholar 

  11. Chatragadda K, Vargeese A (2017) A kinetics investigation on the Nitro-Nitrite rearrangement mediated thermal decomposition of high temperature monoclinic phase of 1,1-Diamino-2,2-Dinitroethylene (γ-Fox-7). J Chem Sci 129(2):281–288. https://doi.org/10.1007/s12039-016-1220-z

    Article  CAS  Google Scholar 

  12. Fan X-Z, Li J-Z, Liu Z-R (2007) Thermal behavior of 1,1-Diamino-2,2-dinitroethylene. J Phys Chem A 111(51):13291–13295. https://doi.org/10.1021/jp075889l

    Article  CAS  PubMed  Google Scholar 

  13. Volkova NN, Kazakov AI, Danilchik AV, Shastin AV, Shilov GV (2018) Proceedings of the 21th seminar New Trends in Research of Energetic Materials, Pardubice

  14. Nazin GM, Prokudin VG (2008) Retardation of unimolecular reactions in the solid phase. Russ J Phys Chem B 2(3):366–370. https://doi.org/10.1134/S1990793108030068

    Article  Google Scholar 

  15. Zhang Y, Sun Q, Xu K, Song J, Zhao F (2016) Review on the reactivity of 1,1-Diamino-2,2-dinitroethylene (FOX-7). Propellants Explos Pyrotech 41(1):35–52. https://doi.org/10.1002/prep.201500065

    Article  CAS  Google Scholar 

  16. Khrapkovskii GM, Shamov AG, Nikolaeva EV, Chachkov DV (2009) Mechanisms of gas phase decomposition of C-Nitro compounds from quantum chemical data. Russ Chem Rev 78(10):903–943. https://doi.org/10.1070/RC2009v078n10ABEH004053

    Article  CAS  Google Scholar 

  17. Krisyuk BE, Zakharov VV, Chukanov NV (2020) On the mechanism of thermal decomposition Of 1,1-Diamino-2,2-Dinitroethene (Fox-7) and its cyclic derivatives. Cent Eur J Energ Mater 17(1):20–30. https://doi.org/10.22211/cejem/118513

    Article  CAS  Google Scholar 

  18. Krisyuk BE, Sypko TM (2021) Alternative mechanism of thermolysis of diaminodinitroethylene (FOX-7). Russ Chem Bull 70(2):424–426. https://doi.org/10.1007/s11172-021-3103-9

    Article  CAS  Google Scholar 

  19. Krisyuk BE, Sypko TM (2021) New thermolysis routes of diaminodinitroethylene (DADNE). Propellants Explos Pyrotech 46(7):1079–1096. https://doi.org/10.1002/prep.202000324

    Article  CAS  Google Scholar 

  20. Klapötke TM, Chapman RD (2015) Progress in the area of high energy density materials. In: Michael D, Mingos P (eds.) 50 Years of structure and bonding: the anniversary volume. Structure and bonding 172:49–63. https://doi.org/10.1007/430_2015_190

  21. Krisyuk BE, Sypko TM (2020) Effect of Substituents on the Energy Barrier to Internal Rotation in Aminonitroethylenes. Russ J Appl Chem 93(6):888–895. https://doi.org/10.1134/S107042722006016X

    Article  Google Scholar 

  22. Frumkin AE, Yudin NV, Suponitsky KY, Sheremetev AB (2018) 1-Amino-1-hydroxyamino-2,2-dinitroethene: novel insights in chemistry of FOX-7. Mendeleev Commun 28(2):135–137. https://doi.org/10.1016/j.mencom.2018.03.007

    Article  CAS  Google Scholar 

  23. Frisch MJ, Truck GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  24. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  25. Krisyuk BE (2020) Quantum chemical calculation of the primary thermolysis reactions of 1,1-diamino-2,2-dinitroethylene (FOX-7). Russ Chem Bull 69(12):2256–2264. https://doi.org/10.1007/s11172-020-3046-6

    Article  CAS  Google Scholar 

  26. Ignatov SK, Moltran: program for visualization of molecular data and calculations of thermodynamic parameters, N.I. Lobachevsky Nizhny Novgorod State University, http://qchem.unn.ru/moltran , http://github.com/skignatov/moltran [accessed February 3, 2020].

  27. Krisyuk BE (2020) Influence of intramolecular and intermolecular interactions on internal rotation around C=C Bond in FOX-7 molecules and its derivatives. Russ J Phys Chem B 14(1):1–4. https://doi.org/10.1134/S1990793120010054

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed in accordance with the state task, state registration No. AAAA-A19-119101690058-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Krisyuk.

Ethics declarations

Conflicts of interest

The authors declare that they have no Conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krisyuk, B.E., Sypko, T.M. Mechanism of thermolysis of hydroxylamino-dinitroethylenes. Theor Chem Acc 140, 149 (2021). https://doi.org/10.1007/s00214-021-02851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02851-9

Keywords

Navigation