Skip to main content
Log in

Modeling environmental effects in two-photon circular dichroism calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Accounting for solvent effects in theoretical predictions of spectroscopic properties may be of significant importance since a solvent—and on a more general basis any environment—may influence key spectroscopic parameters in nontrivial ways—especially in relation to calculation of nonlinear optical properties. At the simplest level, solvent effects may be included into quantum chemistry calculations by use of a dielectric continuum approach; however, such a description may fail in addressing correctly environment anisotropies as well as specific interactions such as hydrogen bonding. On the other hand, discrete embedding methods allow for a more correct description of an environment since such methods keep the atomistic nature of the environment intact. In this paper, two-photon circular dichroism (TPCD) spectra will be calculated for two different biaryl derivatives introducing solvent effects by two different discrete embedding schemes, i.e., polarizable embedding based on induced dipoles (PE) or the fluctuating charge (FQ) model. While we find inclusion of solvent effects on this molecular property to be important, we conclude at the same time that the influence of the solvent on the TPCD rotatory strength is accounted for in an overall rather equivalent manner by either embedding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tamura K (2008) Biosystems 92(1):91–98

    Article  CAS  PubMed  Google Scholar 

  2. Barron LD (2008) Strategies of Life Detection pp 187–201

  3. Noyori R (2003) Adv Synth Catal 345(1–2):15–32

    Article  CAS  Google Scholar 

  4. Mcconnell O, Bach A, Balibar C, Byrne N, Cai Y, Carter G, Chlenov M, Di L, Fan K, Goljer I et al (2007) Chirality 19(9):658–682

    Article  CAS  PubMed  Google Scholar 

  5. Schellman JA (1975) Chem Rev 75(3):323–331

    Article  CAS  Google Scholar 

  6. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications. Wiley, Hoboken

    Google Scholar 

  7. Tinoco I Jr, Mickols W, Maestre MF, Bustamante C (1987) Annu Rev Biophys Biophys Chem 16(1):319–349

    Article  CAS  PubMed  Google Scholar 

  8. Nafie LA (2011) Vibrational optical activity: principles and applications. Wiley, Hoboken

    Book  Google Scholar 

  9. Barron LD (2009) Molecular light scattering and optical activity. Cambridge University Press, Cambridge

    Google Scholar 

  10. Stephens PJ, Devlin FJ, Pan JJ (2008) Chirality 20(5):643–663

    Article  CAS  PubMed  Google Scholar 

  11. Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Adv Mater 20(24):4641–4678

    Article  CAS  Google Scholar 

  12. Hernández FE, Rizzo A (2011) Molecules 16(4):3315–3337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tinoco I Jr (1975) J Chem Phys 62(3):1006–1009

    Article  CAS  Google Scholar 

  14. Power E (1975) J Chem Phys 63(4):1348–1350

    Article  CAS  Google Scholar 

  15. Rizzo A, Jansík B, Pedersen TB, Ågren H (2006) J Chem Phys 125(6):064113

    Article  CAS  Google Scholar 

  16. London F (1937) J Phys Radium 8(10):397–409

    Article  CAS  Google Scholar 

  17. Helgaker T, Jorgensen P (1991) J Chem Phys 95(4):2595–2601

    Article  CAS  Google Scholar 

  18. Hansen AE, Bouman TD (1980) Natural chiroptical spectroscopy: theory and computations. In: Advances in chemical physics. https://doi.org/10.1002/9780470142639.ch5

  19. De Boni L, Toro C, Hernández FE (2008) Opt Lett 33(24):2958–2960

    Article  PubMed  Google Scholar 

  20. Lin N, Santoro F, Zhao X, Toro C, De Boni L, Hernández FE, Rizzo A (2011) J Phys Chem B 115(5):811–824

    Article  CAS  PubMed  Google Scholar 

  21. List NH, Olsen JMH, Kongsted J (2016) Phys Chem Chem Phys 18(30):20234–20250

    Article  CAS  PubMed  Google Scholar 

  22. Cappelli C (2016) Int J Quantum Chem 116(21):1532–1542

    Article  CAS  Google Scholar 

  23. Marini A, Muñoz-Losa A, Biancardi A, Mennucci B (2010) J Phys Chem B 114(51):17128–17135

    Article  CAS  PubMed  Google Scholar 

  24. Kulik HJ, Zhang J, Klinman JP, Martínez TJ (2016) J Phys Chem B 120(44):11381–11394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Provorse MR, Peev T, Xiong C, Isborn CM (2016) J Phys Chem B 120(47):12148–12159

    Article  CAS  PubMed  Google Scholar 

  26. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11(6):700–733

    Article  CAS  Google Scholar 

  27. Senn HM, Thiel W (2009) Angew Chem Int Ed 48(7):1198–1229

    Article  CAS  Google Scholar 

  28. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999–3094

    Article  CAS  PubMed  Google Scholar 

  29. Olsen JM, Aidas K, Kongsted J (2010) J Chem Theory Comput 6(12):3721–3734

    Article  CAS  Google Scholar 

  30. Lipparini F, Barone V (2011) J Chem Theory Comput 7(11):3711–3724

    Article  CAS  PubMed  Google Scholar 

  31. Nørby MS, Olsen JMH, Steinmann C, Kongsted J (2017) J Chem Theory Comput 13(9):4442–4451

    Article  PubMed  CAS  Google Scholar 

  32. Jansík B, Rizzo A, Ågren H (2005) Chem Phys Lett 414(4–6):461–467

    Article  CAS  Google Scholar 

  33. Friese DH, Hättig C, Rizzo A (2016) Phys Chem Chem Phys 18(19):13683–13692

    Article  CAS  PubMed  Google Scholar 

  34. Diaz C, Lin N, Toro C, Passier R, Rizzo A, Hernandez FE (2012) J Phys Chem Lett 3(13):1808–1813

    Article  CAS  PubMed  Google Scholar 

  35. Rizzo A, Lin N, Ruud K (2008) J Chem Phys 128(16):164312

    Article  PubMed  CAS  Google Scholar 

  36. Olsen JMH, Aidas K, Kongsted J (2010) J Chem Theory Comput 6:3721–3734

    Article  CAS  Google Scholar 

  37. Olsen JMH, List NH, Kristensen K, Kongsted J (2015) J Chem Theory Comput 11(4):1832–1842

    Article  CAS  PubMed  Google Scholar 

  38. Rick SW, Stuart SJ, Berne BJ (1994) J Chem Phys 101(7):6141–6156

    Article  CAS  Google Scholar 

  39. Rick SW, Berne B (1996) J Am Chem Soc 118(3):672–679

    Article  CAS  Google Scholar 

  40. Mortier WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107(4):829–835

    Article  CAS  Google Scholar 

  41. Sanderson R (1951) Science 114(2973):670–672

    Article  CAS  PubMed  Google Scholar 

  42. Reinholdt P, Nørby MS, Kongsted J (2018) J Chem Theory Comput 14(12):6391–6404

    Article  CAS  PubMed  Google Scholar 

  43. Vesga Y, Hernandez FE (2016) J Phys Chem A 120(34):6774–6779

    Article  CAS  PubMed  Google Scholar 

  44. Loncaric C, Wulff WD (2001) Org Lett 3(23):3675–3678

    Article  CAS  PubMed  Google Scholar 

  45. Sahnoun R, Koseki S, Fujimura Y (2005) J Mol Struct 735:315–324

    Article  CAS  Google Scholar 

  46. Polavarapu PL, Petrovic AG, Vick SE, Wulff WD, Ren H, Ding Z, Staples RJ (2009) J Org Chem 74(15):5451–5457

    Article  CAS  PubMed  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian\(\sim \)09 Revision D.01. Gaussian Inc. Wallingford CT 2009

  49. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P et al (2014) Wires Comput Mol Sci 4(3):269–284

    Article  CAS  Google Scholar 

  50. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  51. Wang J, Wang W, Kollman PA, Case DA (2006) J Mol Graph 25(2):247–260

    Article  CAS  Google Scholar 

  52. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  53. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem A 97(40):10269–10280

    Article  CAS  Google Scholar 

  54. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  55. Case DA, Babin V, Berryman J, Betz R, Cai Q, Cerutti D, Cheatham Iii T, Darden T, Duke R, Gohlke H (2014)

  56. Pastor RW, Brooks BR, Szabo A (1988) Mol Phys 65(6):1409–1419

    Article  Google Scholar 

  57. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  58. Olsen JMH (2018) PyFraME: Python tools for Fragment-based Multiscale Embedding. https://doi.org/10.5281/zenodo.1443314

  59. Beerepoot MT, Steindal AH, List NH, Kongsted J, Olsen JMH (2016) J Chem Theory Comput 12(4):1684–1695

    Article  CAS  PubMed  Google Scholar 

  60. Carnimeo I, Cappelli C, Barone V (2015) J Comput Chem 36(31):2271–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. (2019) Qsite, Schrödinger, LLC, New York, NY

  62. Isborn CM, Mar BD, Curchod BF, Tavernelli I, Martinez TJ (2013) J Phys Chem B 117(40):12189–12201

    Article  CAS  PubMed  Google Scholar 

  63. Štěpánek P, Bouř P (2014) Phys Chem Chem Phys 16(38):20639–20649

    Article  PubMed  CAS  Google Scholar 

  64. Toro C, De Boni L, Lin N, Santoro F, Rizzo A, Hernandez FE (2010) Chirality 22(1E):E202–E210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Computations/simulations for the work described herein were supported by the DeIC National HPC Centre, SDU. We acknowledge the Danish Council for Independent Research for financial support (Grant ID: DFF–7014-00050B) and the H2020-MSCA-ITN-2017 COSINE Training network for COmputational Spectroscopy In Natural sciences and Engineering (Project ID: 765739) for financial support. We would like to thank Prof. Antonio Rizzo for providing the experimental TPCD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Prioli.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prioli, S., Kongsted, J. Modeling environmental effects in two-photon circular dichroism calculations. Theor Chem Acc 140, 138 (2021). https://doi.org/10.1007/s00214-021-02838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02838-6

Keywords

Navigation