Skip to main content
Log in

Interaction between organic molecules and a gold nanoparticle: a quantum chemical topological analysis

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ligands at the surface of a gold nanoparticle (GNP) have a significant influence on the optical and physical properties, that may render different functionalities to the GNP. Therefore, there is a need in understanding the nature of the interaction at atomic resolution in order to allow rational design of GNPs with desired physico-chemical properties. The interaction between Au\(_{79}\) and a series of small organic molecules has been systematically studied at the quantum mechanical level : methane, methanol, formic acid, hydrogen sulfide, benzene, and ammonia. The reactivity of Au\(_{79}\) has been first analyzed by performing the condensed Fukui analysis to emphasize that the surface of Au\(_{79}\) is dominated by electrophilic sites, with higher reactivity at the corner and edge atoms. The net charge transfer flowing from the organic molecules toward Au\(_{79}\) comes from the electrophilic behavior of the GNP. Furthermore, the shape of the frontier molecular orbitals of Au\(_{79}\) and of the incoming organic molecules has been found to dictate the preferred orientation of the adsorption. Several quantum chemical topological analyses of the electron density have been performed to further classify the interactions to weak dispersive or van der Waals interactions in methane and stronger non-covalent interactions in ammonia, benzene, hydrogen sulfide, methanol, and formic acid. The analysis of the electron localization function (ELF), on the other hand, provides more insight about the charge transfer, as the population of the basins of the organic molecules has decreased after interacting with Au\(_{79}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sicard-Roselli C, Brun E, Gilles M, Baldacchino G, Kelsey C, McQuaid H, Polin C, Wardlow N, Currell F (2014) Small 10(16):3338. https://doi.org/10.1002/smll.201400110

    Article  CAS  PubMed  Google Scholar 

  2. Baldacchino G, Brun E, Denden I, Bouhadoun S, Roux R, Khodja H, Sicard-Roselli C (2019) Cancer Nanotechnol 10(1):3. https://doi.org/10.1186/s12645-019-0047-y

    Article  Google Scholar 

  3. Gilles M, Brun E, Sicard-Roselli C (2018) J Colloid Interface Sci 525:31. https://doi.org/10.1016/j.jcis.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  4. Iosin M, Toderas F, Baldeck PL, Astilean S (2009) J Mol Struct 924–926:196. https://doi.org/10.1016/j.molstruc.2009.02.004

    Article  CAS  Google Scholar 

  5. Schwenk N, Mizaikoff B, Cárdenas S, Lopez-Lorente AI (2018) Analyst 143:5103. https://doi.org/10.1039/C8AN00804C

    Article  CAS  PubMed  Google Scholar 

  6. Carnovale C, Bryant G, Shukla R, Bansal V (2018) Phys Chem Chem Phys 20(46):29558. https://doi.org/10.1039/C8CP05938A

    Article  CAS  PubMed  Google Scholar 

  7. Brancolini G, Kokh DB, Calzolai L, Wade RC, Corni S (2012) ACS Nano 6(11):9863. https://doi.org/10.1021/nn303444b

    Article  CAS  PubMed  Google Scholar 

  8. Novelli F, BernalLopez M, Schwaab G, RoldanCuenya B, Havenith M (2019). J Phys Chem B. https://doi.org/10.1021/acs.jpcb.9b02358

    Article  PubMed  Google Scholar 

  9. Shen YR, Ostroverkhov V (2006) Chem Rev 106(4):1140. https://doi.org/10.1021/cr040377d

    Article  CAS  PubMed  Google Scholar 

  10. Velasco-Velez JJ, Wu CH, Pascal TA, Wan LF, Guo J, Prendergast D, Salmeron M (2014) Science 346(6211):831. https://doi.org/10.1126/science.1259437

    Article  CAS  PubMed  Google Scholar 

  11. Hoarau M, Badieyan S, Marsh ENG (2017) Org Biomol Chem 15(45):9539. https://doi.org/10.1039/C7OB01880K

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Hu Y, Li S, Zhang Y, Chen X (2013) Spectrochim Acta A Mol Biomol Spectrosc 104:41. https://doi.org/10.1016/j.saa.2012.11.103

    Article  CAS  PubMed  Google Scholar 

  13. Petit T, Yuzawa H, Nagasaka M, Yamanoi R, Osawa E, Kosugi N, Aziz EF (2015) J Phys Chem Lett 6(15):2909. https://doi.org/10.1021/acs.jpclett.5b00820

    Article  CAS  PubMed  Google Scholar 

  14. Tang M, Gandhi NS, Burrage K, Gu Y (2019) Langmuir 35(13):4435. https://doi.org/10.1021/acs.langmuir.8b03680

    Article  CAS  PubMed  Google Scholar 

  15. Rosa M, DiFelice R, Corni S (2018) Langmuir 34(49):14749. https://doi.org/10.1021/acs.langmuir.8b00065

    Article  CAS  PubMed  Google Scholar 

  16. Le JB, Cheng J (2020) Curr Opin Electrochem 19:129. https://doi.org/10.1016/j.coelec.2019.11.008

    Article  CAS  Google Scholar 

  17. Ramezani F, Amanlou M, Rafii-Tabar H (2014) J Nanoparticle Res 16(7):2512. https://doi.org/10.1007/s11051-014-2512-1

    Article  CAS  Google Scholar 

  18. Hong G, Heinz H, Naik RR, Farmer BL, Pachter R, Appl ACS (2009) Mater Interfaces 1(2):388. https://doi.org/10.1021/am800099z

    Article  CAS  Google Scholar 

  19. Lee SS, Kim B, Lee S (2014) J Phys Chem C 118(36):20840. https://doi.org/10.1021/jp412438f

    Article  CAS  Google Scholar 

  20. Hoefling M, Iori F, Corni S, Gottschalk KE (2010) Langmuir 26(11):8347. https://doi.org/10.1021/la904765u

    Article  CAS  PubMed  Google Scholar 

  21. Wang JG, Selloni A (2009) J Phys Chem C 113(20):8895. https://doi.org/10.1021/jp901842p

    Article  CAS  Google Scholar 

  22. El-Mageed HRA, Taha M (2019) Liq J Mol 296:111903. https://doi.org/10.1016/j.molliq.2019.111903

    Article  CAS  Google Scholar 

  23. Xu Z, Yuan SL, Yan H, Liu CB (2011) Colloid Surf A Physicochem Eng Asp 380(1):135. https://doi.org/10.1016/j.colsurfa.2011.02.046

    Article  CAS  Google Scholar 

  24. Feng J, Slocik JM, Sarikaya M, Naik RR, Farmer BL, Heinz H (2012) Small 8(7):1049. https://doi.org/10.1002/smll.201102066

    Article  CAS  PubMed  Google Scholar 

  25. Feng J, Pandey RB, Berry RJ, Farmer BL, Naik RR, Heinz H (2011) Soft Matter 7(5):2113. https://doi.org/10.1039/c0sm01118e

    Article  CAS  Google Scholar 

  26. Hoefling M, Iori F, Corni S, Gottschalk KE (2010) ChemPhysChem 11(8):1763. https://doi.org/10.1002/cphc.200900990

    Article  CAS  PubMed  Google Scholar 

  27. Domínguez-Castro A, Hernández D, Guzmán F (2017) Theor Chem Acc 136:7. https://doi.org/10.1007/s00214-017-2118-7

    Article  CAS  Google Scholar 

  28. DarvishGanji M, TavassoliLarijani H, Alamol-hoda R, Mehdizadeh M (2018) Sci. Rep. 8(1):11400. https://doi.org/10.1038/s41598-018-29887-5

    Article  CAS  Google Scholar 

  29. Yao G, Huang Q (2018) J Phys Chem C 122(27):15241. https://doi.org/10.1021/acs.jpcc.8b00949

    Article  CAS  Google Scholar 

  30. Shao Q, Hall CK (2016) Langmuir 32(31):7888. https://doi.org/10.1021/acs.langmuir.6b01693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barnard A, Sun B, MotevalliSoumehsaraei B, Opletal G (2017) https://data.csiro.au/collections/#collection/CIcsiro:23472v3/DItrue. Silver nanoparticle data set

  32. SekharDe H, Krishnamurty S, Pal S (2010) J Phys Chem C 114(14):6690. https://doi.org/10.1021/jp1004852

    Article  CAS  Google Scholar 

  33. Allison TC, Tong YJ (2011) Phys Chem Chem Phys 13:12858. https://doi.org/10.1039/C1CP20376B

    Article  CAS  PubMed  Google Scholar 

  34. Chrétien S, Gordon MS, Metiu H (2004) J Chem Phys 121(8):3756. https://doi.org/10.1063/1.1769366

    Article  CAS  PubMed  Google Scholar 

  35. Yang W, Mortier WJ (1986) J Am Chem Soc 108(19):5708. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  36. Martínez J (2009) Chem Phys Lett 478(4):310

    Article  Google Scholar 

  37. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425(4):342

    Article  CAS  Google Scholar 

  38. Flores-Moreno R, Melin J, Ortiz JV, Merino G (2008) J Chem Phys 129(22):224105. https://doi.org/10.1063/1.3036926

    Article  CAS  PubMed  Google Scholar 

  39. Flores-Moreno R (2010) J Chem Theory Comput 6(1):48. https://doi.org/10.1021/ct9002527

    Article  CAS  PubMed  Google Scholar 

  40. Geudtner G, Calaminici P, Carmona-Espíndola J, Campo JMD, Domínguez-Soria VD, Moreno RF, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vásquez-Pérez JM, Vela A, Zúñinga-Gutierrez B, Salahub DR (2012) WIREs Comput Mol Sci 2(4):548. https://doi.org/10.1002/wcms.98

    Article  CAS  Google Scholar 

  41. Goursot A, Mineva T, Kevorkyants R, Talbi D (2007) J Chem Theory Comput 3(3):755. https://doi.org/10.1021/ct600373f

    Article  CAS  PubMed  Google Scholar 

  42. Ross RB, Powers JM, Atashroo T, Ermler WC, LaJohn LA, Christiansen PA (1990) J Chem Phys 93(9):6654. https://doi.org/10.1063/1.458934

    Article  CAS  Google Scholar 

  43. Popelier PLA, Aicken FM (2003) ChemPhysChem 4(8):824. https://doi.org/10.1002/cphc.200300737

    Article  CAS  PubMed  Google Scholar 

  44. Popelier PLA (2014) in The Chemical Bond (Wiley-VCH Verlag GmbH & Co. KGaA 271–308. https://doi.org/10.1002/9783527664696.ch8

  45. Lu T, Chen F (2012) J Comput Chem 33(5):580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  46. Bader RFW, MacDougall PJ, Lau CDH (1984) J Am Chem Soc 106(6):1594. https://doi.org/10.1021/ja00318a009

    Article  CAS  Google Scholar 

  47. Bader RFW (1998) J Phys Chem A 102(37):7314. https://doi.org/10.1021/jp981794v

    Article  CAS  Google Scholar 

  48. Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39(11):2360. https://doi.org/10.1021/ic991316e

    Article  CAS  PubMed  Google Scholar 

  49. Becke AD, Edgecombe KE (1990) J Chem Phys 92(9):5397. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  50. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132(18):6498. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu T, Chen F (2012) J Theor Comput Chem 11(01):163. https://doi.org/10.1142/s0219633612500113

    Article  CAS  Google Scholar 

  52. Bader RFW (1985) Acc Chem Res 18(1):9. https://doi.org/10.1021/ar00109a003

    Article  CAS  Google Scholar 

  53. Puyo M, Lebon E, Vendier L, Kahn ML, Fau P, Fajerwerg K, Lepetit C (2020) Inorg Chem 59(7):4328. https://doi.org/10.1021/acs.inorgchem.9b03166

    Article  CAS  PubMed  Google Scholar 

  54. Bulteau Y, Lepetit C, Lacaze-Dufaure C (2020) Inorg Chem 59(24):17916. https://doi.org/10.1021/acs.inorgchem.0c01972

    Article  CAS  PubMed  Google Scholar 

  55. Laplaza R, Peccati F, Boto RA, Quan C, Carbone A, Piquemal JP, Maday Y, Contreras-García J (2020) WIREs Comput Mol Sci 11:2. https://doi.org/10.1002/wcms.1497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. D. Lauvergnat and Dr. J.P. Dognon for a careful reading of the manuscript and helpful discussions. This work was performed using HPC resources from the GENCI (CINES/IDRIS, Grant No. 2020-A0080806830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Clavaguéra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Supplementary Information

Valence molecular orbitals of Au79, condensed Fukui analysis, geometries, interaction energies and charge transfers for the different interaction sites, charge transfer from various population analyses, and quantum chemical topological data are provided in Supplementary Information. A set of coordinates for the different complexes is also provided. Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4739 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 6 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 6 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 6 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Supplementary file1 (XYZ 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandiana, R., Van-Oanh, NT. & Clavaguéra, C. Interaction between organic molecules and a gold nanoparticle: a quantum chemical topological analysis. Theor Chem Acc 140, 118 (2021). https://doi.org/10.1007/s00214-021-02821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02821-1

Keywords

Navigation