Skip to main content
Log in

Molecular fingerprints based on Jacobi expansions of electron densities

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Molecular fingerprint indices are derived from Jacobi expansion of molecular electron density in a ball. Electron density computed in the linear combination of atomic orbitals framework, at any computational level, is expanded in terms of suitable Jacobi polynomials times regular spherical harmonics. The procedure is applicable to calculations with either Gaussian or Slater-type orbitals. A very efficient algorithm previously reported for Canterakis–Zernike expansions is shown to be also applicable for this type of expansions. The procedure has been implemented in the DAMQT suite for the analysis of electron density, which facilitates the application to densities obtained with standard packages for molecular structure calculations. Fingerprints derived from Jacobi expansions are compared with other derived from Canterakis–Zernike expansions in some pharmacological molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amat L, Carbó-Dorca R (2000) J Chem Inf Comput Sci 40(5):1188. https://doi.org/10.1021/ci0000272

    Article  PubMed  CAS  Google Scholar 

  2. Bultinck P, Carbó-Dorca R (2005) J Chem Sci 117(5):425. https://doi.org/10.1007/BF02708346

    Article  CAS  Google Scholar 

  3. Carbó-Dorca R (2012) J Math Chem 50(4):734. https://doi.org/10.1007/s10910-011-9920-6

    Article  CAS  Google Scholar 

  4. Carbó-Dorca R (2012) J Math Chem 50(2):2339

    Article  CAS  Google Scholar 

  5. Carbó-Dorca R, Besalú E (2012) J Math Chem 50(1):210. https://doi.org/10.1007/s10910-011-9906-4

    Article  CAS  Google Scholar 

  6. Carbó-Dorca R, Besalú E (2013) J Math Chem 51(1):382. https://doi.org/10.1007/s10910-012-0089-4

    Article  CAS  Google Scholar 

  7. Carbó-Dorca R (2013) J Math Chem 51(2):413. https://doi.org/10.1007/s10910-012-0091-x

    Article  CAS  Google Scholar 

  8. Mezey P (1995) Methods of molecular shape similarity and topological shape design. In: Dean PM (ed) Molecular similarity in drug design. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1350-2_10

    Chapter  Google Scholar 

  9. Carbó R (1995) Molecular similarity and reactivity: from quantum chemical to phenomenological approache. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

  10. Carbó-Dorca R, Mezey P (1996) Advances in molecular similarity, vol 1. JAI Press Inc., Greenwich

    Google Scholar 

  11. Carbó-Dorca R, Mezey P (1998) Advances in molecular similarity, vol 2. JAI Press Inc., Greenwich

    Google Scholar 

  12. Carbó-Dorca R, Besalú E (1998) Theochem 451:11. https://doi.org/10.1016/S0166-1280(98)00155-9

    Article  Google Scholar 

  13. Carbó-Dorca R, Besalú E, Gironés X (1998) Adv Quantum Chem 38:1

    Google Scholar 

  14. Carbó-Dorca R, Gironés X, Mezey PG (2001) Fundamentals of molecular similarity. Kluwer Academic/Plenum Publ., New York

    Book  Google Scholar 

  15. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) J Med Chem 57:3186–3204. https://doi.org/10.1021/jm401411z

    Article  PubMed  CAS  Google Scholar 

  16. Buonfiglio R, Engkvist O, Várkonyi P, Henz A, Vikeved E, Backlund A, Kogej T (2019) J Chem Inf Model 55(11):2375–2390. https://doi.org/10.1021/acs.jcim.5b00375

    Article  CAS  Google Scholar 

  17. Cleves A, Johnson S, Jain A (2019) J Chem Sci 33:865. https://doi.org/10.1007/s10822-019-00236-6

    Article  CAS  Google Scholar 

  18. Muratov EN et al (2020) Chem Soc Rev 49:3525. https://doi.org/10.1039/D0CS00098A

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mezey P (1994) J Chem Inf Comp Sci 34:244. https://doi.org/10.1021/ci00018a002

    Article  CAS  Google Scholar 

  20. Bero SA, Muda AK, Choo YH, Muda NA, Pratama SF (2014) J Phys Conf Ser 892:012015. https://doi.org/10.1088/1742-6596/892/1/012015

    Article  CAS  Google Scholar 

  21. Carbó-Dorca R (2008) J Math Chem 44(1):286. https://doi.org/10.1007/s10910-007-9315-x

    Article  CAS  Google Scholar 

  22. Mercado LD, Carbó-Dorca R (2011) J Math Chem 49(8):1558. https://doi.org/10.1007/s10910-011-9841-4

    Article  CAS  Google Scholar 

  23. García-Hernández C, Fernández A, Serratosa F (2019) J Chem Inf Model 59(4):1410. https://doi.org/10.1021/acs.jcim.8b00820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mezey P (2012) Phys Chem Chem Phys 14:8516. https://doi.org/10.1039/C2CP40237H

    Article  PubMed  CAS  Google Scholar 

  25. Simon E, Mezey P (2012) Phys Chem Chem Phys 1314:1097. https://doi.org/10.1007/s00214-012-1097-y

    Article  CAS  Google Scholar 

  26. Mezey P (2014) Acc Chem Res 47:2821. https://doi.org/10.1021/ar5001154

    Article  CAS  Google Scholar 

  27. Antall Z, Warburton PL, Mezey PG (2014) Phys Chem Chem Phys 16:918. https://doi.org/10.1039/C3CP53954G

    Article  Google Scholar 

  28. Carbó-Dorca (2013) Concepts and methods in modern theoretical chemistry: electronic structure and reactivity. In: Swapan Kumar Ghosh PKC (ed). CRC Press, Boca Raton, pp 349–365

  29. Liu J, Yang L, Li Y, Pan D, Hopfinger AJ (2006) Bioorganic Med Chem 14(3):611. https://doi.org/10.1016/j.bmc.2005.08.035

    Article  CAS  Google Scholar 

  30. Yap CW (2011) J Comput Chem 32(7):1466. https://doi.org/10.1002/jcc.21707

    Article  PubMed  CAS  Google Scholar 

  31. Liu J, Yang L, Li Y, Pan D, Hopfinger AJ (2005) J Comput Aided Mol Des 19(8):567. https://doi.org/10.1007/s10822-005-9012-4

    Article  PubMed  CAS  Google Scholar 

  32. Myint KZ, Wang L, Tong Q, Xie XQ (2012) Mol Pharm 9(10):2912. https://doi.org/10.1021/mp300237z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McGregor MJ, Muskal SM (1999) J Chem Inf Comput Sci 39(3):569. https://doi.org/10.1021/ci980159j

    Article  PubMed  CAS  Google Scholar 

  34. McGregor MJ, Muskal SM (2000) J Chem Inf Comput Sci 40(1):117. https://doi.org/10.1021/ci990313h

    Article  PubMed  CAS  Google Scholar 

  35. Besalú E, Gironés X, Amat L, Carbó-Dorca R (2002) Acc Chem Res 35:289. https://doi.org/10.1021/ar010048x

    Article  PubMed  CAS  Google Scholar 

  36. Carbó-Dorca R (2018) Int J Quantum Chem 1:e25602. https://doi.org/10.1002/qua.25602

    Article  CAS  Google Scholar 

  37. Putta S, Beroza PZ (2007) Curr Top Med Chem 7:1514–1524. https://doi.org/10.2174/156802607782194770

    Article  PubMed  CAS  Google Scholar 

  38. Mezey P (1993) Shape in chemisty: an introduction to molecular shape and topology. VCH, New York

    Google Scholar 

  39. Constans P, Carbó R (1995) J Chem Inf Comput Sci 35:1046. https://doi.org/10.1021/ci00028a015

    Article  CAS  Google Scholar 

  40. Constans P, Amat L, Fradera X, Carbó-Dorca R (1995) Quantum molecular similarity measures (QMSM) and the atomic shell approximation (ASA). In: Carbó-Dorca R, Mezey P (eds) Advances in molecular similarity, vol 1. JAI Press Inc., Greenwich, p 1995

    Google Scholar 

  41. Amat L, Carbó-Dorca R (1997) J Comput Chem 18:2023. https://doi.org/10.1002/(SICI)1096-987X(199712)18:16<2023::AID-JCC7>3.0.CO;2-N

    Article  CAS  Google Scholar 

  42. Gironés X, Amat L, Carbó-Dorca R (1998) J Mol Graph Model 16:190. https://doi.org/10.1016/S1093-3263(98)80003-X

    Article  Google Scholar 

  43. Amat L, Carbó-Dorca R (1999) J Comput Chem 20:911. https://doi.org/10.1002/(SICI)1096-987X(19990715)20:9<911::AID-JCC2>3.0.CO;2-O

    Article  CAS  Google Scholar 

  44. Carbó-Dorca R, Robert D, Amat L, Gironés X, Besalú E (2000) Molecular quantum similarity in QSAR and drug design, vol 73. Lectures and notes in chemistry. Springer, New York

    Book  Google Scholar 

  45. Urquiza-Carvalho G, Rocha G, Lopez R (2018) J Comput Chem 39:2022. https://doi.org/10.1002/jcc.25376

    Article  PubMed  CAS  Google Scholar 

  46. Zernike F (1934) Mon Not R Astron Soc 94:377

    Article  Google Scholar 

  47. Canterakis N (1999) In 11th Scandinavian conference on image analysis, pp 85–93

  48. Abramowitz M, Stegun I (1970) Handbook of mathematical functions, 9th edn. Dover, New York

    Google Scholar 

  49. Gradshteyn I, Ryzhik IS (1980) Table of integrals, series and products, 4th edn. Academic, New York

    Google Scholar 

  50. Yin S, Dokholyan NV (2011) Proteins 79:1002–1009. https://doi.org/10.1002/prot.22941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rico JF, Lopez R, Ema I, Ramirez G (2005) J Comput Chem 26(8):846. https://doi.org/10.1002/jcc.20219

    Article  CAS  Google Scholar 

  52. Collado JRA, Rico JF, Lopez R, Paniagua M, Ramirez G (1989) Comput Phys Commun 52(3):323. https://doi.org/10.1016/0010-4655(89)90107-0

    Article  Google Scholar 

  53. Buschmann H, Díaz J, Holenz J, Párraga A, Torrens A, Vela J (2007) Antidepressants, antipsychotics. From chemistry and pharmacology to clinical application. Wiley-VCH, Anxiolytics

    Google Scholar 

  54. Hershenberg R, Gros DF, Brawman-Mintzer O (2014) CNS Drugs 28(6):519. https://doi.org/10.1007/s40263-014-0162-6

    Article  PubMed  CAS  Google Scholar 

  55. Lopez R, Fernandez-Rico J, Ramirez G, Ema I, Zorrilla D, Kumar A, Yeole S, Gadre S (2017) Comput Phys Commun 214:207.  https://doi.org/10.1016/j.cpc.2017.01.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the Ramón Carbó-Dorca for his mastery in the field of “Quantum Similarity”, a fundamental concept with vast applications in the fields of Chemistry and Pharmacology. Ramón’s outstanding contributions make him one of the most renown pioneers in this field. But above all, we want to acknowledge his warm and encouraging friendship along the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel García de la Vega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Appendix

Appendix

To compute derivatives of functions \(J_{kl}^{m}\) with respect to Cartesian coordinates, it is better to express them in terms of unnormalized real regular harmonics, \(z_{l}^{m}(\mathbf {r}/r^{*})\):

$$\begin{aligned} J_{kl}^{m}(\mathbf {t}) = \sqrt{\frac{2(k+l)+3}{{r^{*}}^{3}}} \ P_{k}^{(0,2+2l)}(2t-1) \ \mathcal{{N}}_{{\rm lm}}^\Omega \ z_{l}^{m}(\mathbf {t}) \end{aligned}$$
(24)

where \(\mathbf {t}\equiv \mathbf {r}/r^{*}\), \(t \equiv |\mathbf {t}|\), and the unnormalized real regular harmonics are related to real spherical harmonics by:

$$\begin{aligned} z_{l}^{m}(\mathbf {t}) = \ t^{l} \ \mathcal {Z}_{l}^{m}(\theta ,\phi ) / \mathcal{{N}}_{{\rm lm}}^\Omega \end{aligned}$$
(25)

\(\theta\) and \(\phi\) being the corresponding angular coordinates of \(\mathbf {t}\), and \(\mathcal{{N}}_{{\rm lm}}^\Omega\), the angular normalization factor:

$$\begin{aligned} \mathcal{{N}}_{{\rm lm}}^\Omega = \left[ \frac{(2L+1) \ (L-|M|)!}{2 \ (1+\delta _{M0}) \ \pi \ (L+|M|)!}\right] ^{1/2} \end{aligned}$$
(26)

Taking into account that \(\frac{\partial t}{\partial x} = \frac{\partial (r/{r^{*}})}{\partial x} = \frac{1}{{r^{*}}} \ \frac{x}{r}\), and using the chain rule: \(\frac{\partial }{\partial x} = \frac{{\rm d} t_{x}}{{\rm d} x} \ \frac{\partial }{\partial t_{x}} = \frac{{\rm d}}{{\rm d} x}\left( \frac{x}{{r^{*}}}\right) \ \frac{\partial }{\partial t_{x}} = \frac{1}{{r^{*}}} \ \frac{\partial }{\partial t_{x}}\), the derivatives are given by:

$$\begin{aligned} \frac{\partial J_{kl}^{m}(\mathbf {t})}{\partial x}=\, & {} \sqrt{2(k+l)+3} \ \mathcal{{N}}_{{\rm lm}}^\Omega \ \frac{1}{{r^{*}}} \ \left[ \frac{x}{r} \ \frac{{\rm d} P_{k}^{(0,2+2l)}(2t-1)}{{\rm d} t} \ z_{l}^{m}(\mathbf {t}) \right. \nonumber \\&\quad +\, \left. P_{k}^{(0,2+2l)}(2t-1) \ \frac{\partial z_{l}^{m}(\mathbf {t})}{\partial t_{x}} \right] \end{aligned}$$
(27)

The derivatives of the unnormalized Jacobi polynomials, \(P_{k}^{(0,2+2l)}\), with respect to variable t are given by—see [49] eq 8.961.4:

$$\begin{aligned} {P' \ }_{k}^{(0,2+2l)}(2t-1) \equiv \frac{\partial P_{k}^{(0,2+2l)}(2t-1)}{\partial t} = (k+2l+3) \ P_{k-1}^{(1,3+2l)}(2t-1) \end{aligned}$$
(28)

and a recursion formula can be found for them again with the aid of eq 8.961.2 of ref [49], namely:

$$\begin{aligned}&k \ (k+l+1) \ (k+2l+3) \ {P' \ }_{k+1}^{(0,2+2l)} \nonumber \\=\, & {} (2k+2l+3) \ \bigl [ (k+l+1) \ (k+l+2) \ (2t-1) - (l+1) \ (l+2) \bigr ] \ {P' \ }_{k}^{(0,2+2l)} \nonumber \\&\quad -\, k \ (k+l+2) \ (k+2l+3) \ {P' \ }_{k-1}^{(0,2+2l)} \end{aligned}$$
(29)

where the argument of the polynomials has been omitted to facilitate reading. Expressions for derivatives with respect to y and z are obtained by just changing names of variables in Eq. (27).

On the other hand, as it has been reported [55], the derivatives of the regular spherical harmonics with respect to Cartesian coordinates can be computed in a straightforward way in terms of these harmonics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, R., Martínez, F. & de la Vega, J.M.G. Molecular fingerprints based on Jacobi expansions of electron densities. Theor Chem Acc 140, 18 (2021). https://doi.org/10.1007/s00214-020-02708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02708-7

Keywords

Navigation