Skip to main content
Log in

Effects of nitrogen atoms on the stability and reactivity of tricyclic boracarbenes by DFT

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Following our quest for novel carbenes, effects of substituting 1 to 5 nitrogen atoms on the stability and reactivity of singlet (s) and triplet (t) forms of 7-boratricyclo[1,1,1,01,7,07,3,07,5]hexa-2-carbylenes (120) are compared and contrasted, at B3LYP/aug-cc-pvtz level of theory. All species appear as ground state minima on their energy surface, for showing no negative force constant. Singlets (1s20s) are ground states and more stable than their corresponding triplets (1t20t). Reactivity of the species (1s20s vs. 1t20t) is discussed in terms of isodesmic reactions, considering nucleophilicity (N), electrophilicity (ω), and heat of hydrogenation. As well as, the addition of nitrogen atoms decreased nucleophilicity (N), while increasing electrophilicity (ω). Despite the enormous steric strain involved in their cubic structures, the most stable scrutinized carbenes appear to be singlet 1,4,5-triaza-7-boratricyclo[1,1,1,01,7,07,3,07,5]hexa-2-carbylene (13) for showing the highest value of ΔEs–t. Such higher stabilization is attributed to a coordinate covalent bond observed between the carbenic center and the boron atom. This study offers new insights into the chemistry of these exotic tricyclic shaped carbenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kassaee MZ, Ghambarian M, Musavi SM, Shakib FA, Momeni MR (2009) J Phys Org Chem 22:919–924

    CAS  Google Scholar 

  2. Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S (2018) Chem Rev 118:9678–9842

    CAS  PubMed  Google Scholar 

  3. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496

    CAS  PubMed  Google Scholar 

  4. Liu M, Li Q, Li W, Cheng J (2016) Struct Chem 28(3):823–831

    CAS  Google Scholar 

  5. Arduengo J III, Dias HVR, Dixon DA, Harlow RL, Klooster WT, Koetzle TF (1994) J Am Chem Soc 116:6812–6822

    CAS  Google Scholar 

  6. Aysin RR, Bukalov SS, Leites LA, Zabula AV (2017) Dalton Trans 46:8774–8781

    CAS  PubMed  Google Scholar 

  7. Gonzalez C, Restrepo-Cossio A, Marquez M, Wiberg KB (1996) J Am Chem Soc 118:5408–5411

    CAS  Google Scholar 

  8. Cabeza JA, García-Álvarez P, Pérez-Carreño E, Polo D (2014) Inorg Chem 53:8735–8741

    CAS  PubMed  Google Scholar 

  9. Kassaee MZ, Shakib FA, Momeni MR, Ghambarian M, Musavi SM (2010) J Org Chem 75:2539–2545

    CAS  PubMed  Google Scholar 

  10. Abu-Saleh A-AA, Almatarneh MH, Poirier RA (2018) Chem Phys Lett 698:36–40

    CAS  Google Scholar 

  11. Kirmse W (2004) Angew Chem Int Ed 43(14):1767–1769

    CAS  Google Scholar 

  12. Akbari A, Golzadeh B, Arshadi S, Kassaee MZ (2015) RSC Adv 5:43319–43327

    CAS  Google Scholar 

  13. Kirilchuk AA, Rozhenko AB, Leszczynski J (2017) Comp Theor Chem 1103:83–91

    CAS  Google Scholar 

  14. Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    CAS  Google Scholar 

  15. Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478

    CAS  PubMed  Google Scholar 

  16. Kato T, Maerten E, Baceiredo A (2010) Organomet Chem 30:131–147

    CAS  Google Scholar 

  17. Lee TJ, Bunge A, Schaefer HF (1985) J Am Chem Soc 107(1):137–142

    CAS  Google Scholar 

  18. Despagnet-Ayoub E, Grubbs RH (2004) J Am Chem Soc 126:10198–10199

    CAS  PubMed  Google Scholar 

  19. Despagnet-Ayoub E, Grubbs RH (2005) Organometallics 24:338–340

    CAS  Google Scholar 

  20. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122–3172

    CAS  Google Scholar 

  21. Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J, Ebel K, Brode S (1995) Angew Chem Int Ed 34(9):1021–1023

    CAS  Google Scholar 

  22. Krahulic KE, Tuononen HM, Parvez M, Roesler R (2009) J Am Chem Soc 131:5858–5865

    CAS  PubMed  Google Scholar 

  23. Mendoza-Espinosa D, Donnadieu B, Bertrand G (2010) J Am Chem Soc 132:7264–7265

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alder RW, Blake ME, Bortolotti C, Bufali S, Butts CP, Linehan E, Oliva JM, Orpen AG, Quayle M (1999) Chem Commun 241–242

  25. Mayr M, Wurst K, Ongania K-H, Buchmeiser MR (2004) Chem A Eur J 10:1256–1266

    CAS  Google Scholar 

  26. Driess M, Yao S, Brym M, Wüllen CV (2006) Angew Chem Int Ed 2006(45):4349–4352

    Google Scholar 

  27. Bazinet P, Ong T-G, O’Brien JS, Lavoie N, Bell E, Yap GPA, Korobkov I, Richeson DS (2007) Organometallics 26:2885–2895

    CAS  Google Scholar 

  28. Gómez-Bujedo S, Alcarazo M, Pichon C, Alvarez E, Fernández R, Lassaletta JM (2007) Chem Commun 1180–1182

  29. Lai CH (2013) J Mol Model 19(12):5523–5532

    CAS  PubMed  Google Scholar 

  30. Heikki TM, Roesler R, Jason LD, Ragogna PJ (2007) Inorg Chem 46:10693–10706

    Google Scholar 

  31. Alder RW, Blake ME, Bortolotti C, Bufali S, Butts CP, Linehan E, Oliva JM, Orpen AG, Quayle M (1999) J Chem Commum 3:241

    Google Scholar 

  32. Zhang X, Wang K, Niu T (2014) J Struct Chem 26(2):599–606

    Google Scholar 

  33. Chu Q, Makhlouf Brahmi M, Solovyev A, Ueng S-H, Curran DP, Malacria M, Lacôte E (2009) Chem Eur J 15(47):12937–12940

    CAS  PubMed  Google Scholar 

  34. Curran DP, Solovyev A, Makhlouf Brahmi M, Fensterbank L, Malacria M (2011) Angew Chem Int Ed 50:10294–10317

    CAS  Google Scholar 

  35. Makhouf Brahmi M, Monot J, Desage-El Murr M, Curran DP, Fensterbank L (2010) J Org Chem 75:6983–6985

    PubMed  Google Scholar 

  36. Patra SG (2019) Comput Theor Chem 1164:112557

    Google Scholar 

  37. Ueng SH, Fensterbank L, Lacote E, Malacria M, Curran DP (2010) Org Lett 12:3002–3005

    CAS  PubMed  Google Scholar 

  38. Monot J, Makhlouf Brahmi M, Ueng SH, Curran DP, Malacria M, Fensterbank L, Lacote E (2009) Org Lett 11:4914–4917

    CAS  PubMed  Google Scholar 

  39. Horn M, Mayr H, Lacote E, Merling E, Deaner J, Wells S, McFadden T, Curran DP (2012) Org Lett 14:82–85

    CAS  PubMed  Google Scholar 

  40. Pan X, Lacote E, Lalevee J, Curran DP (2012) J Am Chem Soc 134:5669–5674

    CAS  PubMed  Google Scholar 

  41. Lindsay DM, McArthuR D (2010) Chem Commun 46:2474–2476

    CAS  Google Scholar 

  42. Ogawa A, Curran DP (1997) J Org Chem 62:450–451

    CAS  PubMed  Google Scholar 

  43. Tehfe MA, MakhloufBrahmi M, Fouassier JP, Curran DP, Malacria M, Fensterbank L, Lacote E, Lalevee J (2010) Macromolecules 43:2261–2267

    CAS  Google Scholar 

  44. Tehfe MA, Monot J, Malacria M, Fensterbank L, Fouassier JP, Curran DP, Lacote E, Lalevee J (2012) ACS Macro Lett 1:92–95

    CAS  Google Scholar 

  45. Sundermann A, Reiher M, Schoeller WW (1998) Eur J Inorg Chem 3:305–310

    Google Scholar 

  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  47. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318

    CAS  PubMed  Google Scholar 

  48. Domingo LR, Chamorro E, Perez P (2008) J Org Chem 73:4615–4624

    CAS  PubMed  Google Scholar 

  49. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  50. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  51. Kim K, Jordan KD (1994) J Phys Chem 98:10089–10094

    CAS  Google Scholar 

  52. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  53. Doering WE, Hoffmann AK (1954) J Am Chem Soc 76:6162–6165

    CAS  Google Scholar 

  54. Hoffmann R, Schleyer PR, Schaefer HF (2008) Angew Chem Int Ed 47:7164–7167

    Google Scholar 

  55. Haerizade BN, Kassaee MZ, Zandi H, Koohi M, Ahmadia AA (2014) J Phys Org Chem 27:902–908

    CAS  Google Scholar 

  56. Martin D, Baceiredo A, Gornitzka H, Schoeller WW, Bertrand G (2005) Angew Chem Int Ed 44:1700–1703

    CAS  Google Scholar 

  57. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796–4801

    CAS  Google Scholar 

Download references

Acknowledgements

The support from Tarbiat Modares University (TMU) is gratefully acknowledged.

Funding

Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, N., Kassaee, M.Z. & Cummings, P.T. Effects of nitrogen atoms on the stability and reactivity of tricyclic boracarbenes by DFT. Theor Chem Acc 139, 146 (2020). https://doi.org/10.1007/s00214-020-02659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02659-z

Keywords

Navigation