Skip to main content
Log in

Accurate atomic electron affinities calculated by using anionic Gaussian basis sets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The computation of accurate electron affinity (EA) remains one of the most difficult tasks in quantum chemistry. A major source of error in EA calculations is the inadequacy of the basis set (BS) to represent the anionic system, since the Gaussian exponents are normally optimized for the neutral atom energy. To overcome this problem, one must augment the BSs with diffuse functions, which allow a better description of long-range interactions in anionic systems. Here, we report a new methodology to generate BSs for accurate EA computation that consists in the direct optimization of the Gaussian exponents in an anionic environment. By using the anionic basis sets (ABSs), we substantially reduce the errors in EA calculation for boron, carbon, oxygen and fluorine. A graphical analysis of the ABS parameters shows that their exponents are able to span important regions for short- and long-ranged interactions, which permit the ABSs to properly describe both neutral and anionic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vöhringer-Martinez E, Dörner C, Abel B (2014) On the electron affinity of cytosine in bulk water and at hydrophobic aqueous interfaces. Mol Model 20(2453):1–7

    Google Scholar 

  2. Zhang T, Papson K, Ochran R, Ridge DP (2013) Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin. J Phys Chem A 117:11136–11141

    Article  CAS  Google Scholar 

  3. Miller TM et al (2012) Electron attachment to C7F14, thermal detachment from C7F14, the electron affinity of C7F14, and neutralization of C7F14 by Ar+. J Phys Chem A 116:10293–10300

    Article  CAS  Google Scholar 

  4. Yoshida H, Yoshizaki K (2015) Electron affinities of organic materials used for organic light-emitting diodes: a low-energy inverse photoemission study. Org Electron 20:24–30

    Article  CAS  Google Scholar 

  5. Gwinner MC et al (2012) Organic field-effect transistors and solar cells using novel high electron-affinity conjugated copolymers based on alkylbenzotriazole and benzothiadiazole. J Mater Chem 22:4436–4439

    Article  CAS  Google Scholar 

  6. Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: a comparative review. Sol Energ Mat Sol C 107(87):111

    Google Scholar 

  7. Zhang Q et al (2015) Efficient amplified spontaneous emission from oligofluorene-pyrene starbursts with improved electron affinity property. Opt Express 23:465–470

    Article  CAS  Google Scholar 

  8. Nicolai HT et al (2012) Unification of trap-limited electron transport in semiconducting polymers. Nature Mater 11:882–887

    Article  CAS  Google Scholar 

  9. McKenna KP, Shluger AL (2008) Electron-trapping polycrystalline materials with negative electron affinity. Nature Mater 7:859–862

    Article  CAS  Google Scholar 

  10. Dou C et al (2015) Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit. Angew Chem 127:3719–3723

    Article  Google Scholar 

  11. Dell EJ, Capozzi B, Xia J, Venkataraman L, Campos LM (2015) Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nature Chem 7:209–214

    Article  CAS  Google Scholar 

  12. Simons J (2011) Theoretical study of negative molecular ions. Annu Rev Phys Chem 62:107–128

    Article  CAS  Google Scholar 

  13. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys. 96:6796–6806

    Article  CAS  Google Scholar 

  14. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF III, Nandi S, Barney Ellison G (2002) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102:231–282

    Article  CAS  Google Scholar 

  15. Clark T, Chandresekhar J, Schleyer P (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, Li–F. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  16. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  17. Jensen F (2002) Polarization consistent basis sets. III. The importance of diffuse functions. J Chem Phys 117:9234–9240

    Article  CAS  Google Scholar 

  18. Jensen F (2010) Describing anions by density functional theory: fractional electron affinity. J Chem Theory Comput 6:2726–2735

    Article  CAS  Google Scholar 

  19. Barbosa RCA, da Silva ABF (2003) New proposal for discretization of the Griffin–Wheeler–Hartree–Fock equations. Mol Phys 101:1073–1077

    Article  CAS  Google Scholar 

  20. Teodoro TQ, Haiduke RLA (2013) Accurate relativistic adapted Gaussian basis sets for francium through ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models. J Comput Chem 34:2372–2379

    CAS  PubMed  Google Scholar 

  21. Teodoro TQ, da Silva ABF, Haiduke RLA (2014) Relativistic prolapse-free Gaussian basis set of quadruple- ζ Quality: (aug-)RPF-4Z. I. The s- and p-block elements. J Chem Theory Comput 34:3800–3806

    Article  Google Scholar 

  22. Teodoro TQ, da Silva ABF, Haiduke RLA (2014) Relativistic prolapse-free gaussian basis set of quadruple-ζ quality: (aug-)RPF-4Z. II. The d-block elements. J Chem Theory Comput 34:4761–4764

    Article  Google Scholar 

  23. Tatewaki H, Koga T, Sakai Y, Thakkar AJ (1994) Numerical Hartree–Fock energies of low-lying excited states of neutral atoms with Z ≤ 18. J Chem Phys 101:4945–4948

    Article  CAS  Google Scholar 

  24. Koga T, Tatewaki H, Thakkar AJ (1994) Numerical Hartree–Fock energies of singly charged cations and anions with N ≤ 54. J Chem Phys 100:8140–8144

    Article  CAS  Google Scholar 

  25. Hashimoto T, Hirao K, Tatewaki H (1995) Comment on Dunning’s correlation-consistent basis sets. Chem Phys Lett 243:190–192

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H et al (2009) Gaussian 09, revision A.01. Gaussian, Inc, Wallingford

    Google Scholar 

  27. Blondel C (1995) Recent experimental achievements with negative ions. Phys Scr 58:31–42

    Article  Google Scholar 

  28. Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST Standard reference database number 69; National Institute of Standards and Technology: Gaithersburg, MD. http://webbook.nist.gov. Acessed 8 May 2015

  29. Raghavachari K (1985) Basis set and electron correlation effects on the electron affinities of first row atoms. J Chem Phys 82:4142–4146

    Article  CAS  Google Scholar 

  30. Griffin JA, Wheeler JJ (1957) Collective motions in nuclei by the method of generator coordinates. Phys Rev 108:311–327

    Article  CAS  Google Scholar 

  31. da Silva ABF, Trsic M (1996) Gaussian- and Slater-type bases for ground and certain low-lying excited states of positive and negative ions of the atoms H through Xe based on the generator coordinate Hartree–Fock method. Can J Chem 74:1526–1534

    Article  Google Scholar 

  32. Lide DR (2002) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  33. Noro T, Yoshimine M (1991) Ab initio determination of accurate electron affinities of B, C, O and F. Phys Rev Lett 66(9):1157–1160

    Article  CAS  Google Scholar 

  34. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2004) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108:2851–2858

    Article  CAS  Google Scholar 

  35. Feller D, Davidson ER (1985) Ab Initio multireference CI determinations of the electron affinity of carbon and oxygen. J Chem Phys 82(9):4135–4141

    Article  CAS  Google Scholar 

  36. da Silva ABF, Trsic M (1989) Universal Gaussian and Slater-type bases for H to Xe based on the generator coordinate Hartree–Fock method. I. Ground and certain low-lying excited states of the neutral atoms. Mol Phys 68:433–445

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Brazilian Agencies: The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Grant No. 001) and The National Council of Scientific and Technological Development (CNPq). The calculations performed here made use of the computational resources of the Center of Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP (Grant 2013/07375-0). Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 001, 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albérico Borges Ferreira da Silva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa-Amaral, R., Tello, A.C.M., Comar, M. et al. Accurate atomic electron affinities calculated by using anionic Gaussian basis sets. Theor Chem Acc 139, 128 (2020). https://doi.org/10.1007/s00214-020-02629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02629-5

Keywords

Navigation