Skip to main content
Log in

Role of alloying in Cu2O conversion anode for Li-ion batteries

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The successful use of metal oxides as conversion anodes in Li-ion batteries invokes the formation and subsequent reductive decomposition of Li2O. Given the standard reduction potential of Li/Li+ couple, the reduction of Li2O to Li is a thermodynamic challenge. This work investigates the interaction of Li+ ions with a Cu2O matrix computationally using the first principles-based DFT + U methodology. Alloying of Cu and Li takes place more readily than Li2O formation in the early part of the charge cycle. Li2O formation is predicted in the later part of the charge cycle. We attribute the capacity fading observed in oxide conversion anodes to the irreversible accumulation of Li2O and the reversible charge storage capacity delivered by the conversion anodes to alloying. This work indicates that reversible alloying plays a far greater role in the charge–discharge process than is generally acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2008) Nature 451:652–657

    Article  Google Scholar 

  4. Scrosati B, Garche J (2010) J Power Sour 195:2419–2490

    Article  CAS  Google Scholar 

  5. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  6. Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) J Power Sour 257:421–443

    Article  CAS  Google Scholar 

  7. Li CC, Wang YW (2013) J Power Sour 227:204–210

    Article  CAS  Google Scholar 

  8. Croguennec L, Palacin MR (2015) J Am Chem Soc 137:3140–3156

    Article  CAS  Google Scholar 

  9. Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Phys Chem Chem Phys 13:15384–15402

    Article  CAS  Google Scholar 

  10. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Energy Environ Sci 2:638–654

    Article  CAS  Google Scholar 

  11. Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Adv Mater 15:2107–2111

    Article  CAS  Google Scholar 

  12. Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) J Phys Chem Lett 1:1176–1180

    Article  CAS  Google Scholar 

  13. Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  14. Casimir A, Zhang H, Ogoke O, Amine JC, Lu J, Wu G (2016) Nano Energy 27:359–376

    Article  CAS  Google Scholar 

  15. Hwang IS, Kim JC, Seo SD, Lee S, Lee JH, Kim DW (2012) Chem Commun 48:7061–7063

    Article  CAS  Google Scholar 

  16. Li H, Wang Z, Chen L, Huang X (2009) Adv Mater 21:4593–4607

    Article  Google Scholar 

  17. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Energy Environ Sci 4:2682–2699

    Article  CAS  Google Scholar 

  18. Boyanov S, Annou K, Villevieille C, Pelosi M, Zitoun D, Monoconduit L (2008) Ionics 14:183–190

    Article  CAS  Google Scholar 

  19. Lai CH, Lu MY, Chen LJ (2012) J Mater Chem 22:19–30

    Article  CAS  Google Scholar 

  20. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  21. Badway F, Plitz I, Grugeon S, Laruelle S, Dollé M, Gozdz AS, Tarascon JM (2002) Electrochem Solid-State Lett 5(6):A115–A118

    Article  CAS  Google Scholar 

  22. Cao K, Jin T, Li Y, Jiao L (2017) Mater Chem Front 1:2213–2242

    Article  CAS  Google Scholar 

  23. Belliard F, Irvine JTS (2001) J Power Sour 97–98:219–222

    Article  Google Scholar 

  24. Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107–195112

    Article  Google Scholar 

  25. Scanlon DO, Morgan BJ, Watson GW (2009) J Chem Phys 131:124703–125710

    Article  Google Scholar 

  26. Mishra AK, Roldan A, de Leeuw NH (2016) J Phys Chem C 120:2198–2214

    Article  CAS  Google Scholar 

  27. Tahir D, Tougaard S (2012) J Phys Condens Mater 24:175002–175007

    Article  Google Scholar 

Download references

Acknowledgements

GKK acknowledges the Council of Scientific and Industrial Research, Government of India (GOI), for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganga Periyasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, G.K., Periyasamy, G. & Kamath, P.V. Role of alloying in Cu2O conversion anode for Li-ion batteries. Theor Chem Acc 138, 23 (2019). https://doi.org/10.1007/s00214-018-2412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2412-z

Keywords

Navigation