Skip to main content
Log in

Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of formaldehyde: a first principles molecular dynamics study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Water spectacle extraordinary ability to form a variety of hydrogen bonded structure when confronted with hydrophilic solutes. We present the comparative analysis of structural and dynamical features of deuterated formaldehyde in heavy water (D2O) using density functional theory (DFT) and dispersion corrected DFT. Ab initio molecular dynamics calculation is performed by Car–Parrinello method and frequency-time calculations using time series analysis method at ambient conditions. We find that the higher frequency of OD modes of water present inside the first solvation shell of formaldehyde is a result of weak interaction compared to bulk water. We also find that the inclusion of dispersion (i.e., BLYP-D) alters the dynamical features like diffusion, frequency correlation with enhancement of momentum; therefore, molecules experience lower barrier toward their motion and show relatively faster dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sulpizi M, Salanne M, Sprik M, Gaigeot M-P (2013) Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J Phys Chem Lett 4:83

    Article  CAS  Google Scholar 

  2. Gaigeot M-P, Vuilleumier R, Sprik M, Borgis D (2005) Infrared spectroscopy of N-methyl-acetamide revisited by ab initio molecular dynamics simulations. J Chem Theory Comput 1:772

    Article  CAS  Google Scholar 

  3. Gaigeot M-P, Sprik M (2003) Ab initio molecular dynamics computation of the infrared spectrum of aqueous uracil. J Phys Chem B 107:10344

    Article  CAS  Google Scholar 

  4. Yadav VK (2017) Formaldehyde-mediated spectroscopy of heavy water from first principles simulations. Comput Theor Chem 1122:9–15

    Article  CAS  Google Scholar 

  5. Tolosa S, Sanson JA (1997) MD study of an infinitely dilute aqueous solution of formaldehyde using different ab initio potentials. Chem Phys 223:251–257 (and reference 2–8 within)

    Article  CAS  Google Scholar 

  6. Tolosa S, Sanson JA (1996) Molecular dynamics study of infinitely dilute aqueous solutions of small biological molecules: calculation of the static and dynamic properties of formaldehyde. Chem Phys 213:203–210

    Article  CAS  Google Scholar 

  7. Blair JT, Levy RM, Krogh-Jespers K (1990) Molecular mechanics parameters for electronically excited states: the \((n, n^{\ast })\) singlet state of formaldehyde. Chem Phys Lett 166:429–436

    Article  CAS  Google Scholar 

  8. Blair JT, Krogh-Jespers K, Levy RM (1989) Solvent effects on optical absorption spectra: the 1A1.fwdarw. 1A2 transition of formaldehyde in water. J Am Chem Soc 111:6948–6956

    Article  CAS  Google Scholar 

  9. Levy RM, Kitchen DB, Blair JT, Krogh-Jespersen K (1990) Molecular dynamics simulation of time-resolved fluorescence and nonequilibrium solvation of formaldehyde in water. J Phys Chem 94:4470–4476

    Article  CAS  Google Scholar 

  10. Amadei A, DoAbramo M, Zazza C, Aschi M (2003) Electronic properties of formaldehyde in water: a theoretical studys. Chem Phys Lett 381:187–193

    Article  CAS  Google Scholar 

  11. Blair JT, Westbrook JD, Levy RM, Krogh-Jespers K (1989) Simple models for solvation effects on electronic transition energies: formaldehyde and water. Chem Phys Lett 154:531–535

    Article  CAS  Google Scholar 

  12. Mallik BS, Chandra A (2012) Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of acetone: a first principles molecular dynamics study. J Chem Sci 124:215–221

    Article  CAS  Google Scholar 

  13. Gilijamse JJ, Lock AJ, Bakker HJ (2005) Dynamics of confined water molecules. Proc Natl Acad Sci 102:3202–3207

    Article  CAS  Google Scholar 

  14. Yadav VK, Chandra A (2015) First-principles simulation study of vibrational spectral diffusion and hydrogen bond fluctuations in aqueous solution of N-methylacetamide. J Phys Chem B 119:9858–9867

    Article  CAS  Google Scholar 

  15. Yadav VK, Klein ML (2017) Probing the dynamics of N-methylacetamide in methanol via ab initio molecular dynamics. Phys Chem Chem Phys 19:12868–12875

    Article  CAS  Google Scholar 

  16. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  17. Kongsted J, Osted A, Mikkelsen KV, Åstrand P, Christiansen O (2004) Solvent effects on the \(n \rightarrow \pi ^{*}\) electronic transition in formaldehyde: a combined coupled cluster/molecular dynamics study. J Chem Phys 121:8435–8445

    Article  CAS  Google Scholar 

  18. Lupieri P, Ippoliti E, Altoe P, Garavelli M, Mwalaba M, Carloni P (2010) Spectroscopic properties of formaldehyde in aqueous solution: insights from Car–Parrinello and TDDFT/ CASPT2 calculations. J Chem Theory Comput 6:3403–3409

    Article  CAS  Google Scholar 

  19. Ballenegger V, Picaud S, Toubin C (2006) Molecular dynamics study of diffusion of formaldehyde in ice. Chem Phys Lett 432:78–83

    Article  CAS  Google Scholar 

  20. Bercovici T, King J, Becker RS (1972) Formaldehyde: comprehensive spectral investigation as a function of solvent and temperature. J Chem Phys 56:3956–3963

    Article  CAS  Google Scholar 

  21. Vela-Arevelo LV, Wiggins S (2001) Time-frequency analysis of classical trajectories of polyatomic molecules. Int J Bifurc Chaos Appl Sci Eng 22:1359–1380

    Article  Google Scholar 

  22. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  23. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Nakamura M, Tamura K, Murakami S (1995) Isotope effects on thermodynamic properties: mixtures of \(x({\text{ D }}_{2}{\text{ O }}\) or \({\text{ H }}_{2}{\text{ O }}) + (1-x){\text{ CH }}_{3}{\text{ CN }}\) at 298.15 K. Thermochim Acta 253:127–136

    Article  CAS  Google Scholar 

  25. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Article  Google Scholar 

  26. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  27. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428

    Article  CAS  Google Scholar 

  28. Yadav VK, Karmakar A, Choudhuri JR, Chandra A (2012) Vibrational spectral diffusion and hydrogen bond dynamics in liquid methanol: an ab initio molecular dynamics study. Chem Phys 408:36–42

    Article  CAS  Google Scholar 

  29. Yadav VK, Chandra A (2013) Dynamics of hydrogen bonds and vibrational spectral diffusion in liquid methanol from first principles simulations with dispersion corrected density functional. Chem Phys 415:1–7

    Article  Google Scholar 

  30. Yadav VK, Chandra A (2013) Dynamics of supercritical methanol of varying density from first principles simulations: hydrogen bond fluctuations, vibrational spectral diffusion and orientational relaxation. J Chem Phys 138:224501

    Article  Google Scholar 

  31. Yadav VK (2018) Vibrational spectral diffusion in supercritical deuterated ammonia from first principles simulations: roles of hydrogen bonds, free ND modes and inertial rotation of ammonia molecules. J Mol Liq 269:896–904

    Article  CAS  Google Scholar 

  32. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  33. Lee CW, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1476

    Article  CAS  Google Scholar 

  35. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  36. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem 5:741–775

    Article  CAS  Google Scholar 

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  38. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  39. Mallik BS, Semparithi A, Chandra A (2008) Vibrational spectral diffusion and hydrogen bond dynamics in heavy water from first principles. J Phys Chem A 112:5104–5112

    Article  CAS  Google Scholar 

  40. Møller KB, Rey R, Hynes JT (2004) Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. J Phys Chem A 108:1275–1289

    Article  Google Scholar 

  41. Rey R, Møller KB, Hynes JT (2002) Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J Phys Chem A 106:11993–11996

    Article  CAS  Google Scholar 

  42. Mallik BS, Semparithi A, Chandra A (2008) A first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions: D\(_{2}\)O in hydration shells of Cl-ions. J Chem Phys 129:194512

    Article  Google Scholar 

  43. Choudhuri JR, Yadav VK, Karmakar A, Mallik BS, Chandra A (2013) A first principles theoretical study of hydrogen bond dynamics and vibrational spectral diffusion in aqueous ionic solution: water in hydration shell of a fluoride ion. Pure Appl Chem 85:27–40

    Article  CAS  Google Scholar 

  44. Karmakar A, Choudhuri JR, Yadav VK, Mallik BS, Chandra A (2013) A first principles simulation study of vibrational spectral diffusion in aqueous NaBr solutions: dynamics of water in ion hydration shells. Chem Phys 412:13–21

    Article  CAS  Google Scholar 

  45. Karmakar A, Chandra A (2015) Water in hydration shell of an iodide ion: structure and dynamics of solute–water hydrogen bonds and vibrational spectral diffusion from first principles simulations. J Phys Chem B 119:8561–8572

    Article  CAS  Google Scholar 

  46. Delcroix P, Pagliai M, Cardini G, Begue D, Hanoune B (2015) Identification of Di(oxymethylene)glycol in the raman spectrum of formaldehyde aqueous solutions by ab initio molecular dynamics simulations and quantum chemistry calculations. J Phys Chem A 119:9785–9793

    Article  CAS  Google Scholar 

  47. Luzar A, Chandler D (1996) Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett 76:928–931

    Article  CAS  Google Scholar 

  48. Luzar A, Chandler D (1996) Hydrogen bond kinetics in liquid water. Nature (London, UK) 379:55–57

    Article  CAS  Google Scholar 

  49. Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113:10663–10675

    Article  CAS  Google Scholar 

  50. Chandra A (2000) Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys Rev Lett 85:768–771

    Article  CAS  Google Scholar 

  51. Chowdhuri S, Chandra A (2002) Hydrogen bonds in aqueous electrolyte solutions: statistics and dynamics based on both geometric and energetic criteria. Phys Rev E 66:041203

    Article  Google Scholar 

  52. Balasubramanian S, Pal S, Bagchi B (2002) Hydrogen-bond dynamics near a micellar surface: origin of the universal slow relaxation at complex aqueous interfaces. Phys Rev Lett 89:115505–115508

    Article  Google Scholar 

  53. Xu H, Berne BJ (2001) Hydrogen-bond kinetics in the solvation shell of a polypeptide. J Phys Chem B 105:11929–11932

    Article  CAS  Google Scholar 

  54. Xu H, Stern HA, Berne BJ (2002) Can water polarizability Be ignored in hydrogen bond kinetics? J Phys Chem B 106:2054–2060

    Article  CAS  Google Scholar 

  55. Paul S, Chandra A (2005) Liquid–vapor interfacial properties of water–ammonia mixtures: dependence on ammonia concentration. J Chem Phys 123:174712

    Article  Google Scholar 

  56. Paul S, Chandra A (2005) Hydrogen bond properties and dynamics of liquid–vapor interfaces of aqueous methanol solutions. J Chem Theory Comput 1:1221–1231

    Article  CAS  Google Scholar 

  57. Paul S, Chandra A (2005) Liquid–vapor interfaces of water–acetonitrile mixtures of varying composition. J Chem Phys 123:184706

    Article  Google Scholar 

  58. Chanda J, Bandyopadhyay S (2005) Molecular dynamics study of a surfactant monolayer adsorbed at air/water interface. J Chem Theory Comput 1:963–971

    Article  CAS  Google Scholar 

  59. Chanda J, Bandyopadhyay S (2006) Molecular dynamics study of surfactant monolayers adsorbed at the oil/water and air/water interfaces. J Phys Chem B 110:23482–23488

    Article  CAS  Google Scholar 

  60. Rapaport D (1983) Hydrogen bonds in water network organization and lifetimes. Mol Phys 50:1151–1162

    Article  CAS  Google Scholar 

  61. Rick SW, Stuart SJ, Bader JS, Berne BJ (1995) Fluctuating charge force fields for aqueous solutions. J Mol Liq 65(66):31–40

    Article  Google Scholar 

Download references

Acknowledgements

VKY acknowledge discussions and interactions with Prof. Amalendu Chandra, Department of Chemistry, IIT Kanpur. We gratefully acknowledge the financial support from Department of Science Technology (DST), Government of India. Part of the calculations was done at the High Performance Computing Facility at Computer Center, IIT Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, V.K. Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of formaldehyde: a first principles molecular dynamics study. Theor Chem Acc 137, 129 (2018). https://doi.org/10.1007/s00214-018-2333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2333-x

Keywords

Navigation