Skip to main content
Log in

A new equation of state for real gases developed into the framework of Bader’s Theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The van der Waals equation since now represented the unique equation of state for real gases with a spherical atomic partition, which was disproved during the years by different scientists including Bader and co-workers. Thus, through a work into the framework of Bader’s Theory a new equation of state for real gases due to the substitution of van der Walls dumping parameters is presented and tested on a series of gas (monoatomic, diatomic, and triatomic). The different atomic partition and the interaction energy obtained through ab initio calculation proposed in the new equation showed the best feasibility of the latter respect to van der Waals equation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van der Waals JD (1873) On the Continuity of the Gaseous and Liquid States (doctoral dissertation); Universiteit Leiden

  2. Rah K, Eu BC (2001) The generic van der Waals equation of state and self-diffusion coefficients of liquids. J Chem Phys 115:2634–2640

    Article  CAS  Google Scholar 

  3. Hoover WG, Stell G, Goldmark E, Degani GD (1975) Generalized van der Waals equation of state. J Chem Phys 63:5434–5438

    Article  CAS  Google Scholar 

  4. Rah K, Eu BC (2002) Generic van der Waals equation of state and theory of diffusion coefficients: binary mixtures of simple liquids. J Chem Phys 116:7967–7976

    Article  CAS  Google Scholar 

  5. Su G-J, Chang C-H (1946) A generalized van der Waals equation of state for real gases. Ind Eng Chem 38(8):800–802

    Article  CAS  Google Scholar 

  6. Su G-J, Chang C-H (1946) Generalized equation of state for real gases. Ind Eng Chem 38(8):802–803

    Article  CAS  Google Scholar 

  7. Metcalf WV (1916) Van der Waals Equation—a supplementary paper. J Phys Chem 20(3):177–187

    Article  CAS  Google Scholar 

  8. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  9. Bader RFW (1985) Atoms in molecule. Acc Chem Res 18(1):9–15

    Article  CAS  Google Scholar 

  10. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  11. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University, Ithaca

    Google Scholar 

  12. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68(3):441–451

    Article  CAS  Google Scholar 

  13. Zefirov YuV, Zorkii PM (1989) Van der Waals radii and their chemical applications. Usp Khim 58(5):713–746

    Article  CAS  Google Scholar 

  14. Zefirov YuV, Zorkii PM (1995) New chemical applications of the van der Waals radii. Usp Khim 64(5):446–460

    Article  CAS  Google Scholar 

  15. Filippini G, Gavezzotti A (1993) Empirical intermolecular potentials for organic crystals: the 6-exp approximation revisited. Acta Crystallogr B 49(5):868–880

    Article  Google Scholar 

  16. Dunitz JD, Gavezzotti A (1999) Attractions and repulsions in molecular crystals. Acc Chem Res 32(8):677–684

    Article  CAS  Google Scholar 

  17. Batsanov SS (1998) Van der Waals radii of elements evaluated from the Morse equation. Zh Obshch Khim 68(4):529–534

    Google Scholar 

  18. Batsanov SS (1995) Van der Waals radii of elements from structural inorganic chemistry data. Izv Akad Nauk Ser Khim 1:24–29

    Google Scholar 

  19. Batsanov SS (2000) Van der Waals radii evaluated from structural parameters of metals. Zh Fiz Khim 74(7):1273–1276

    CAS  Google Scholar 

  20. Batsanov SS (1999) Calculation of van der Waals radii of atoms from bond distances. J Mol Struct 468:151–159

    Article  CAS  Google Scholar 

  21. Batsanov SS (2000) Intramolecular contact radii close to the van der Waals radii. Zh Neorg Khim 45(6):992–996

    CAS  Google Scholar 

  22. Batsanov SS (1994) Van der Waals radii of metals from spectroscopicdata. Izv Akad Nauk Ser Khim 8:1374–1378

    Google Scholar 

  23. Batsanov SS (1999) Van der Waals radii of hydrogen in gas-phase and condensed molecules. Struct Chem 10(6):395–400

    Article  CAS  Google Scholar 

  24. Batsanov SS (2000) Anisotropy of van der Waals atomic radii in the gas-phase and condensed molecules. Struct Chem 11(2/3):177–183

    Article  CAS  Google Scholar 

  25. Batsanov SS (2001) Anisotropy in the van der Waals area of complex, condensed, and gas-phase molecules. Koord Khim 27:11

    Article  Google Scholar 

  26. Wieberg N (1995) Lehrbuch der anorganischen Chemie. Gruyter, Berlin

    Google Scholar 

  27. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem 100(18):7384–7391

    Article  CAS  Google Scholar 

  28. Batsanov SS (2001) Van de Waals radii of elements. Inorg Mater 37(9):871–885

    Article  CAS  Google Scholar 

  29. Grabowski SJ (2011) What Is the covalency of hydrogen bonding? Chem Rev 111(4):2597–2625

    Article  CAS  PubMed  Google Scholar 

  30. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116(7):1838–1845

    Article  CAS  PubMed  Google Scholar 

  31. Parthasarthi R, Subramanian V, Sathyamurthy N (2005) Hydrogen bonding in phenol, water, and phenol-water clusters. J Phys Chem A 109(5):843–850

    Article  CAS  Google Scholar 

  32. Hathwar VR, Guru Row TN (2011) Charge density analysis of heterohalogen (Cl···F) and Homohalogen (F···F) intermolecular interactions in molecular crystals: importance of the extent of polarizability. Cryst Growth Des 11(4):1338–1346

    Article  CAS  Google Scholar 

  33. Hirano Y, Takeda K, Miki K (2016) Charge-density analysis of an iron-sulfur protein at an ultra-high resolution of 0.48 Å. Nature 534:281–284

    Article  CAS  PubMed  Google Scholar 

  34. Gatti C, Orlando AM, Monza E, Lo Presti L (2016) In applications of topological methods in molecular chemistry. Springer series challenges and advances in computational chemistry and physics, vol 22. Springer, New York, pp 101–129

    Google Scholar 

  35. Gatti C, Saleh G, Lo Presti L et al (2012) Sagamore XVII on CSMD. Sapporo, Japan

    Google Scholar 

  36. Hey J, Leusser D, Kratzert D, Fliegl H, Dieterich JM, Mata RA, Stalke D (2013) Heteroaromaticity approached by charge density investigations and electronic structure calculations. Phys Chem Chem Phys 15:20600–20610

    Article  CAS  PubMed  Google Scholar 

  37. Pal R, Mukherjee S, Chandrasekhar S, Guru Row TN (2014) Exploring cyclopentadienone antiaromaticity: charge density studies of various tetracyclones. J Phys Chem A 118:3479–3489

    Article  CAS  PubMed  Google Scholar 

  38. Gatti C, Saleh G, Lo Presti L (2016) Source function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater B72:180–193

    Article  CAS  Google Scholar 

  39. Gatti C, Macchi P (2012) Modern charge-density analysis. Springer, Dordrecht

    Book  Google Scholar 

  40. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, New York

    Google Scholar 

  41. Park D (1992) Introduction to quantum theory, 3rd edn. McGraw-Hil, New York

    Google Scholar 

  42. Carter AS (2001) Classical and statistical thermodynamics. Prentice-Hall, Upper Saddle River

    Google Scholar 

  43. Hill TL (1948) Derivation of the complete van der Waals’ equation from statistical mechanics. J Chem Educ 25(6):347–348

    Article  CAS  Google Scholar 

  44. Cassam-Chenai P, Jayatilaka D (2001) Some fundamental problems with zero flux partitioning of electron densities. Theor Chem Acc 105:213–218

    Article  CAS  Google Scholar 

  45. Lane JR (2013) CCSDTQ optimized geometry of water dimer. J Chem Theory Comput 9(1):316–323

    Article  CAS  PubMed  Google Scholar 

  46. Gatti C, Fantucci P, Pacchioni G (1987) Charge density topological study of bonding in lithium clusters. Theor Chim Acta 72:433–458

    Article  CAS  Google Scholar 

  47. Atkins P, De Paula J (2006) Physical Chemistry. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to supervisor Prof. Artem R. Oganov for his ongoing support. This work was carried out thanks to the equipment kindly provided by the Siberian Supercomputer Center ICMMG SB RAS and “Supercomputing Center of the Novosibirsk State University” (http://nusc.nsu.ru)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Tantardini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tantardini, C. A new equation of state for real gases developed into the framework of Bader’s Theory. Theor Chem Acc 137, 93 (2018). https://doi.org/10.1007/s00214-018-2271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2271-7

Keywords

Navigation