Skip to main content
Log in

Theoretical investigation on the interaction of hypergolic monomethylhydrazine with 1-chloro-1,1-dinitro-2-(N-chloroamidino)ethane using DFT methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction mechanism underlying the hypergolic reaction of pure monomethylhydrazine (MMH) with 1-chloro-1,1-dinitro-2-(N-chloroamidino)ethane (CDNCE) was theoretically investigated with the density functional theory method. We identified two key atomistic level factors that affect ignition delay: (1) exothermicity for the formation of aerosol mCDNCE·nMMH complexes (m, n = 1, 2). The most cost-effective form was found to be 2CDNCE·MMH with the highest energy release (releasing energy: 23.4 kcal/mol), indicating that the oxidizer-rich form is favorable. These complexes contributed the most to heat gathering and temperature increases in the system at the beginning of all reactions. (2) For the initial reaction of MMH with CDNCE, the SN2 mechanism was preferred. The activation barrier of the primary reactions was calculated to be 27.4 kcal/mol, which is also the rate-limiting step of this path. Because the rate of formation of NO2 was four orders of magnitude lower than the SN2 reaction at room temperature, the effect of MMH with NO2 was less significant at temperatures below 800 K. Thus, we consider the ignition reaction of MMH with CDNCE to be well characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herve G, Jacob G, Latypov N (2005) Tetrahedron 61(28):6743–6748

    Article  CAS  Google Scholar 

  2. Klaptke TM (2007) Struct Bond 125:85–121

    Article  Google Scholar 

  3. Bladek J, Pietrzyk S, Cudzilo S, Chylek Z (2009) Propellants Explos Pyrotech 34(4):321–325

    Article  CAS  Google Scholar 

  4. Gao HX, Shreeve JM (2011) Chem Rev 111(11):7377–7436

    Article  CAS  Google Scholar 

  5. Dippold AA, Klapotke TM (2013) J Am Chem Soc 135(26):9931–9938

    Article  CAS  Google Scholar 

  6. Izsak D, Klapotke TM, Reuter S (2013) Eur J Inorg Chem 2013(32):5641–5651

    Article  CAS  Google Scholar 

  7. Cheng Z, Yan-shui Z, Huan H, Fu-qiang B, Bo-zhou W, Ya-nan M (2011) Chin J Energy Mater 19(3):243–246

    Google Scholar 

  8. Zhou C, Zhou YS, Ma YN, Huo H, Bi FQ, Li WJ (2011) Chin J Spectrosc Lab 28(2):818–821

    CAS  Google Scholar 

  9. Vo TT, Zhang JH, Parrish DA, Twamley B, Shreeve JM (2013) J Am Chem Soc 135(32):11787–11790

    Article  CAS  Google Scholar 

  10. Liu WG, Wang SQ, Dasgupta S, Thynell ST, Goddard WA, Zybin S, Yetter RA (2013) Combust Flame 160(5):970–981

    Article  CAS  Google Scholar 

  11. McQuaid MJ, Ishikawa Y (2006) J Phys Chem A 110(18):6129–6138

    Article  CAS  Google Scholar 

  12. Osmont A, Catoire L, Klapotke TM, Vaghjiani GL, Swihart MT (2008) Propellants Explos Pyrotech 33(3):209–212

    Article  CAS  Google Scholar 

  13. Pichon S, Catoire L, Chaumeix N, Paillard C (2005) J Propuls Power 21(6):1057–1061

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  15. Neese F (2012) Wires Comput Mol Sci 2(1):73–78

    Article  CAS  Google Scholar 

  16. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1–3):215–241

    Article  CAS  Google Scholar 

  17. Goerigk L, Grimme S (2011) J Chem Theory Comput 7(2):291–309

    Article  CAS  Google Scholar 

  18. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104. doi:10.1063/1.3382344

    Article  Google Scholar 

  19. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456–1465

    Article  CAS  Google Scholar 

  20. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

  21. Lu T, Chen FW (2012) J Comput Chem 33(5):580–592

    Article  Google Scholar 

  22. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  23. Kuklja MM, Rashkeev SN, Zerilli FJ (2006) Appl Phys Lett 89(7):071904. doi:10.1063/1.2335680

    Article  Google Scholar 

  24. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107(1):89–97

    Article  CAS  Google Scholar 

  25. Zhu RS, Raghunath P, Lin MC (2013) J Phys Chem A 117(32):7308–7313

    Article  CAS  Google Scholar 

  26. Yu ZJ, Bernstein ER (2013) J Phys Chem A 117(42):10889–10902

    Article  CAS  Google Scholar 

  27. Mathieu D (2013) J Phys Chem A 117(10):2253–2259

    Article  CAS  Google Scholar 

  28. Lesar A (2013) Chem Phys Lett 579:28–34

    Article  CAS  Google Scholar 

  29. Booth RS, Lam CS, Butler LJ (2013) J Phys Chem Lett 4(3):547–550

    Article  CAS  Google Scholar 

  30. Zhang CY, Wang XL, Zhou MF (2011) J Comput Chem 32(8):1760–1768

    Article  CAS  Google Scholar 

  31. Tan BS, Long XP, Peng RF, Li HB, Jin B, Chu SJ (2011) J Phys Chem A 115(38):10610–10616

    Article  CAS  Google Scholar 

  32. Li JS (2010) J Phys Chem B 114(6):2198–2202

    Article  CAS  Google Scholar 

  33. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) J Phys Chem B 109(18):8978–8982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21573090, 21303067, 21373099, 21403086), Scientific Research Fund of Jilin Provincial Education Department (2015437), and Science and technology research project of Jilin Provincial Department of Education in 12th Five-Year Plan (No. 388[2011]) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiling Liu or Xuri Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Liu, H., Huang, X. et al. Theoretical investigation on the interaction of hypergolic monomethylhydrazine with 1-chloro-1,1-dinitro-2-(N-chloroamidino)ethane using DFT methods. Theor Chem Acc 136, 120 (2017). https://doi.org/10.1007/s00214-017-2139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2139-2

Keywords

Navigation