Skip to main content
Log in

Determination of exchange coupling constants in linear polyradicals by means of local spins

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work extends the previously reported studies (Oliva et al. in Theor Chem Acc 132:1329, 2013, Theor Chem Acc 134:9, 2015) on electronic structures of simple polyhedral polyradicals constructed from s = ½ closo-carborane CB11H12 structural units. Linear polyradical structures obtained from these units connected by means of –CH2– bridges are described in terms of their energies and local spins. The resulting spin states of these chains have been mapped onto a phenomenological Heisenberg spin Hamiltonian, providing the evaluation of spin exchange coupling constants and performing an analysis of their transferability. The eigenvalues of this Hamiltonian allow one to determine the ground spin state and the suitable combinations of spin orientations of the magnetic sites. We prove that the minimal energy in all these systems corresponds to the highest-spin state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Müller J, Base K, Magnera TF, Michl J (1992) J Am Chem Soc 114:9721

    Article  Google Scholar 

  2. Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K (2016) Nat Chem 8:563

    Article  CAS  Google Scholar 

  3. Lipscomb WN (1963) Boron hydrides. Benjamin WA, Inc., New York

    Google Scholar 

  4. Ponec R, Roithova J, Sannigrahi AB, Lain L, Torre A, Bochicchio RC (2000) J Mol Struct (Theochem) 505:283

    Article  CAS  Google Scholar 

  5. Torre A, Lain L, Bochicchio R, Ponec R (1999) J Comput Chem 20:1085

    Article  CAS  Google Scholar 

  6. Lobayan RM, Bochicchio RC, Torre A, Lain L (2011) J Chem Theory Comput 7:979

    Article  CAS  Google Scholar 

  7. Grimes RN (2016) Carboranes, 3rd edn. Elsevier, San Diego

    Google Scholar 

  8. Sivaev IB, Bregadze VI, Sjöberg S (2002) Collect Czech Chem Commun 67:679

    Article  CAS  Google Scholar 

  9. Serrano-Andres L, Klein DJ, Schleyer PVR, Oliva JM (2008) J Chem Theory Comput 4:1338

    Article  CAS  Google Scholar 

  10. Wade K (2009) Nat Chem 1:92

    Article  CAS  Google Scholar 

  11. Carey FA, Giuliano RM (2016) Organic chemistry, 10th edn. McGraw-Hill, New York

    Google Scholar 

  12. Day P, Underhill AE (eds) (1999) Metal-organic and organic molecular magnets. RSC, Cambridge

    Google Scholar 

  13. Ouahab L, Yagubskii E (eds) (2004) Organic conductors, superconductors and magnets: from synthesis to molecular electronics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  14. Datta SN, Trindle CO, Illas F (2014) Theoretical and computational aspects of magnetic organic molecules. World Scientific Publishing, London

    Book  Google Scholar 

  15. Turro NJ, Ramamurthy V, Scaiano JC (2010) Modern molecular photochemistry of organic molecules. University Science Books, California

    Google Scholar 

  16. Kleissinger M, Michl J (1995) Excited states and photo-chemistry of organic molecules. VCH Publisher, Inc., New York

    Google Scholar 

  17. Hnyk D, McKee M (2015) Boron: the fifth element, in challenges and advances in computational chemistry and physics, vol 20, Series Ed, J. Leszczynski. Springer, Dordrecht

    Book  Google Scholar 

  18. Oliva JM, Alcoba DR, Lain L, Torre A (2013) Theor Chem Acc 132:1329

    Article  Google Scholar 

  19. Alcoba DR, Torre A, Lain L, Oña OB, Oliva JM (2014) Int J Quantum Chem 114:952

    Article  CAS  Google Scholar 

  20. Oliva JM, Alcoba DR, Oña OB, Torre A, Lain L, Michl J (2015) Theor Chem Acc 134:9

    Article  Google Scholar 

  21. Alcoba DR, Oña OB, Massaccesi GE, Torre A, Lain L, Notario R, Oliva JM (2016) Mol Phys 114:400

    CAS  Google Scholar 

  22. Noodleman L (1981) J Chem Phys 74:5737

    Article  CAS  Google Scholar 

  23. Noodleman L, Davidson ER (1986) Chem Phys 109:131

    Article  Google Scholar 

  24. Yamanaka S, Kawakami T, Nagao H, Yamaguchi K (1994) Chem Phys Lett 231:25

    Article  CAS  Google Scholar 

  25. Clark AE, Davidson ER (2001) J Chem Phys 115:7382

    Article  CAS  Google Scholar 

  26. Tsuchimochi T, Scuseria GE (2011) J Chem Phys 134:064101

    Article  Google Scholar 

  27. Mayer I (2007) Chem Phys Lett 440:357

    Article  CAS  Google Scholar 

  28. Alcoba DR, Lain L, Torre A, Bochicchio RC (2009) Chem Phys Lett 470:136

    Article  CAS  Google Scholar 

  29. Torre A, Alcoba DR, Lain L, Bochicchio RC (2010) J Phys Chem A 114:2344

    Article  CAS  Google Scholar 

  30. Alcoba DR, Torre A, Lain L, Bochicchio RC (2011) J Chem Theory Comput 7:3560

    Article  CAS  Google Scholar 

  31. Quinn JJ, Yi K-S (2009) Solid state physics, principles and modern applications. Springer, Berlin

    Google Scholar 

  32. Hermann C, Yu L, Reither M (2006) J Comput Chem 27:1223

    Article  Google Scholar 

  33. Frisch MJ et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  34. Mathematica, Version 9.0 (2012) Wolfram Research, Inc., Campaign, IL

  35. Engelhardt L, Garland SC, Rainey C, Freeman RA (2014) Phys Proc 53:39

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Projects, 200201501100157BA (Universidad de Buenos Aires, Argentina), PIP 11220130100377CO, 2013-1401PCB, PIP 11220130100311CO (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina), and EHU16/10 (Universidad del País Vasco, Spain). We thank the Universidad del País Vasco and the Consejo Superior de Investigaciones Científicas (Spain) for allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Oliva-Enrich.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oña, O.B., Alcoba, D.R., Torre, A. et al. Determination of exchange coupling constants in linear polyradicals by means of local spins. Theor Chem Acc 136, 35 (2017). https://doi.org/10.1007/s00214-017-2059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2059-1

Keywords

Navigation