Skip to main content
Log in

Three-state conical intersection optimization methods: development and implementation at QM/MM level

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Two-state conical intersection optimization methods at both QM and QM/MM levels have been extensively implemented in many commercial and noncommercial packages in the past decade. In contrast, three-state conical intersection optimization methods are less concerned, in particular the QM/MM-based ones. In this work, we have developed a penalty function-based three-state conical intersection optimization approach in the framework of the QM/MM method. We first present the fundamental formulation of this approach, and its algorithm and implementation in our package; then, we have carried out several pilot applications on molecular systems in vacuo and aqueous solution to demonstrate the efficiency of our implemented method. Our current developments enable efficient determination of three-state conical intersection structures of molecules in solution and biological systems, which is at the heart of understanding the photophysical and photochemical mechanisms of large systems at the atomistic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yarkony DR (1996) Rev Mod Phys 68:985–1013

    Article  CAS  Google Scholar 

  2. Yarkony DR (1998) Acc Chem Res 31:511–518

    Article  CAS  Google Scholar 

  3. Domcke W, Yarkony DR, Koppel H (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, River Edge

  4. Robb MA, Garavelli M, Olivucci M, Bernardi FA (2000) Rev Comput Chem 15:87–146

    Article  CAS  Google Scholar 

  5. Levine BG, Martínez TJ (2007) Annu Rev Phys Chem 58:613–634

    Article  CAS  Google Scholar 

  6. Robb MA, Bernardi F, Olivucci M (1995) Pure Appl Chem 67:783–789

    Article  CAS  Google Scholar 

  7. Groenhof G, Boggio-Pasqua M, Schäfer LV, Robb MA (2010) Adv Quantum Chem 59:181–212

    Article  CAS  Google Scholar 

  8. Yarkony DR (1996) J Phys Chem 100:18612–18628

    Article  CAS  Google Scholar 

  9. Yarkony DR (2001) J Phys Chem A 105:6277–6293

    Article  CAS  Google Scholar 

  10. Ben-Nun M, Martínez TJ (2002) Adv Chem Phys 121:439–512

    Article  CAS  Google Scholar 

  11. Aquino AJA, Barbatti M, Lischka H (2006) ChemPhysChem 7:2089–2096

    Article  CAS  Google Scholar 

  12. Fang WH (2008) Acc Chem Res 41:452–457

    Article  CAS  Google Scholar 

  13. Celani P, Robb MA, Garavelli M, Bernardi F, Olivucci M (1995) Chem Phys Lett 243:1–8

    Article  CAS  Google Scholar 

  14. Ruckenbauer M, Barbatti M, Müeller T, Lischka H (2010) J Phys Chem A 114:6757–6765

    Article  CAS  Google Scholar 

  15. Schwalb NK, Temps F (2008) Science 322:243–245

    Article  CAS  Google Scholar 

  16. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) Annu Rev Phys Chem 60:217–239

    Article  CAS  Google Scholar 

  17. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE, Swaminathan VN, Carell T, Zinth W, Kohler B (2007) Science 315:625–629

    Article  CAS  Google Scholar 

  18. Conti I, Altoè P, Stenta M, Garavelli M, Orlandi G (2010) Phys Chem Chem Phys 12:5016–5023

    Article  CAS  Google Scholar 

  19. Bearpark MJ, Robb MA, Schlegel HB (1994) Chem Phys Lett 223:269–274

    Article  CAS  Google Scholar 

  20. Yarkony DR (1993) J Phys Chem 97:4407–4412

    Article  CAS  Google Scholar 

  21. Levine BG, Coe JD, Martínez TJ (2008) J Phys Chem B 112:405–413

    Article  CAS  Google Scholar 

  22. Ragazos IN, Robb MA, Bernardi F, Olivucci M (1992) Chem Phys Lett 197:217–223

    Article  CAS  Google Scholar 

  23. De Vico L, Lindh RJ (2009) Chem Theory Comput 5:186–191

    Article  Google Scholar 

  24. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Science 306:1765–1768

    Article  CAS  Google Scholar 

  25. Lan Z, Dupays A, Vallet V, Mahapatra S, Domcke W (2007) J Photochem Photobiol 190:177–189

    Article  CAS  Google Scholar 

  26. Lan Z, Frutos LM, Sobolewski AL, Domcke W (2008) Proc Natl Acad Sci 105:12707–12712

    Article  CAS  Google Scholar 

  27. Lengsfield BH, Yarkony DR (1992) Adv Chem Phys 82:1–71

    CAS  Google Scholar 

  28. Sanchez-Galvez A, Hunt P, Robb MA, Olivucci M, Vreven T, Schlegel HB (2000) J Am Chem Soc 122:2911–2924

    Article  CAS  Google Scholar 

  29. Toniolo A, Olsen S, Manohar L, Martínez TJ (2004) Faraday Discuss 127:149–163

    Article  CAS  Google Scholar 

  30. Thoss M, Miller WH, Stock G (2000) J Chem Phys 112:10282–10292

    Article  CAS  Google Scholar 

  31. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Phys Chem Chem Phys 4:1093–1100

    Article  CAS  Google Scholar 

  32. Fang WH, Phillips DL (2002) ChemPhysChem 3:889–892

    Article  CAS  Google Scholar 

  33. Cui GL, Ai Y, Fang W (2010) J Phys Chem A 114:730–734

    Article  CAS  Google Scholar 

  34. Keal TW, Koslowski A, Thiel W (2007) Theor Chem Acc 118:837–844

    Article  CAS  Google Scholar 

  35. Blancafort L (2014) ChemPhysChem 15:3166–3181

    Article  CAS  Google Scholar 

  36. Maeda S, Ohno K, Morokuma K (2010) J Chem Theory Comput 6:1538–1545

    Article  CAS  Google Scholar 

  37. Ciminelli C, Granucci G, Persico M (2004) Chem Eur J 10:2327–2341

    Article  CAS  Google Scholar 

  38. Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford, CT

  39. Werner HJ et al (2010) MOLPRO, version 2010.1, a package of ab initio programs. http://www.molpro.net

  40. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Pedersen TB, Pitonák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  41. Thiel W (2007) MNDO99 program, version 6.1., Max-Planck-Institut für Kohlenforschung, Mülheim, Germany

  42. Bernardi F, Olivucci M, Robb MA (1996) Chem Soc Rev 25:321–328

    Article  CAS  Google Scholar 

  43. Toniolo A, Ben-Nun M, Martínez TJ (2002) J Phys Chem A 106:4679–4689

    Article  CAS  Google Scholar 

  44. Virshup AM, Punwong C, Pogorelov TV, Lindquist BA, Ko C, Martínez TJ (2009) J Phys Chem B 113:3280–3291

    Article  CAS  Google Scholar 

  45. Cui GL, Ding L, Feng F, Liu Y, Fang W (2010) J Chem Phys 132:194308–194314

    Article  Google Scholar 

  46. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  47. Warshel A (2003) Annu Rev Biophys Biomol Struct 32:425–443

    Article  CAS  Google Scholar 

  48. Zhang YK, Lee TS, Yang WA (1999) J Chem Phys 110:46–54

    Article  CAS  Google Scholar 

  49. Zhang YK, Liu HY, Yang WT (2000) J Chem Phys 112:3483–3492

    Article  CAS  Google Scholar 

  50. Ferré N, Assfeld X, Rivail JL (2002) J Comput Chem 23:610–624

    Article  Google Scholar 

  51. Toniolo A, Granucci G, Martínez TJ (2003) J Phys Chem A 107:3822–3830

    Article  CAS  Google Scholar 

  52. Pu JZ, Gao JL, Truhlar DG (2004) J Phys Chem A 108:632–650

    Article  CAS  Google Scholar 

  53. Senn HM, Thiel W (2007) Curr Opin Chem Biol 11:182–187

    Article  CAS  Google Scholar 

  54. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  55. Hu H, Yang W (2008) Annu Rev Phys Chem 59:573–601

    Article  CAS  Google Scholar 

  56. Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  57. Bearpark MJ, Larkin SM, Vreven T (2008) J Phys Chem A 112:7286–7295

    Article  CAS  Google Scholar 

  58. Ruiz-Barragan S, Morokuma K, Blancafort L (2015) J Chem Theory Comput 11:1585–1594

    Article  CAS  Google Scholar 

  59. Cui GL, Thiel W (2014) J Phys Chem Lett 5:2682–2687

    Article  CAS  Google Scholar 

  60. Cui GL, Yang W (2011) J Chem Phys 134:204115–204125

    Article  Google Scholar 

  61. Burghardt I, Cederbaum LS, Hynes JT (2004) Faraday Discuss 127:395–411

    Article  CAS  Google Scholar 

  62. Spezia R, Burghardt I, Hynes JT (2006) Mol Phys 104:903–914

    Article  CAS  Google Scholar 

  63. Ten-No S, Hirata F, Kato S (1994) Chem Phys 100:7443–7453

    CAS  Google Scholar 

  64. Yamazaki S, Kato S (2005) J Chem Phys 123:114510–114523

    Article  Google Scholar 

  65. Yamazaki S, Kato S (2007) J Am Chem Soc 129:2901–2909

    Article  CAS  Google Scholar 

  66. Mori T, Nakano K, Kato SJ (2010) Chem Phys 133:064107–064117

    Google Scholar 

  67. Aono S, Minezawa N, Kato S (2010) Chem Phys Lett 492:193–197

    Article  CAS  Google Scholar 

  68. Galván IF, Sánchez ML, Martín ME, del Valle FJO, Aguilar MA (2003) Comput Phys Commun 155:244–259

    Article  Google Scholar 

  69. Galván IF, Martín ME, Aguilar MA (2004) J Comput Chem 25:1227–1233

    Article  Google Scholar 

  70. Losa AM, Martín ME, Galván IF, Aguilar MA (2007) Chem Phys Lett 443:76–81

    Article  Google Scholar 

  71. Hu H, Lu Z, Yang WJ (2007) Chem Theory Comput 3:390–406

    Article  CAS  Google Scholar 

  72. Hu H, Lu Z, Parks JM, Burger SK, Yang W (2008) J Chem Phys 128:034105–034123

    Article  Google Scholar 

  73. Matsika S, Yarkony DR (2002) J Chem Phys 117:6907–6910

    Article  CAS  Google Scholar 

  74. Matsika S, Yarkony DR (2003) J Am Chem Soc 125:10672–10676

    Article  CAS  Google Scholar 

  75. Matsika S (2005) J Phys Chem A 109:7538–7545

    Article  CAS  Google Scholar 

  76. Matsika S (2008) Chem Phys 349:356–362

    Article  CAS  Google Scholar 

  77. Coe JD, Ong MT, Levine BG, Martínez TJ (2008) J Phys Chem A 112:12559–12567

    Article  CAS  Google Scholar 

  78. Bearpark MJ, Robb MA, Schlegel HB (1994) Chem Phys Lett 223:269–274

    Article  CAS  Google Scholar 

  79. ChemShell3.5, a Computational Chemistry Shell, www.chemshell.org

  80. Chang X, Cui GL, Fang W, Thiel W (2015) ChemPhysChem 16:933–937

    Article  CAS  Google Scholar 

  81. Nocedal J (1980) Math Comput 35:773–782

    Article  Google Scholar 

  82. Liu DC, Nocedal J (1989) Math Prog 45:503–528

    Article  Google Scholar 

  83. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  84. Case DA et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  85. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  86. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  87. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  88. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  89. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  90. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  91. Smith W, Forester TR (1996) J Mol Graph 14:136–141

    Article  CAS  Google Scholar 

  92. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  93. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21522302 and 21520102005); G. C. is also grateful for financial support from the “Recruitment Program of Global Youth Experts” and “Fundamental Research Funds for Central Universities.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganglong Cui or Wei-Hai Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Cui, G. & Fang, WH. Three-state conical intersection optimization methods: development and implementation at QM/MM level. Theor Chem Acc 136, 8 (2017). https://doi.org/10.1007/s00214-016-2029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2029-z

Keywords

Navigation