Skip to main content
Log in

Numerical test of SAC-CI methods for calculating vertical ionization energies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Valence, vertical ionization energies of a representative set of closed-shell molecules were calculated with the symmetry-adapted-cluster, configuration-interaction (SAC-CI) method using ten basis sets for its level 1 and level 2 operator inclusion criteria, whereas for its more stringent level 3 scheme, 15 basis sets were used. SAC-CI level 3 is capable of producing mean unsigned errors of approximately 0.2 eV with quadruple \(\zeta\) correlation-consistent basis sets. Fortuitously better results may be obtained when smaller basis sets are used. Anomalous behavior with respect to the basis set size may occur when the level 1 and level 2 options are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Levy M, Perdew JP, Sahni V (1984) Phys Rev A 30:2745–2748

    Article  Google Scholar 

  2. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  3. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  4. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5004

    Article  Google Scholar 

  5. Diarra M, Niquet Y-M, Delerue C, Allan G (2007) Phys Rev B 75:045301

    Article  Google Scholar 

  6. Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Anal Chem 77:1641–1646

    Article  CAS  Google Scholar 

  7. Kauppila TJ, Kostiainen R, Bruins AP (2004) Rapid Commun Mass Spectrom 18:808–815

    Article  CAS  Google Scholar 

  8. Gázquez JL (1993) Chemical hardness. In: Sen K (ed) Structure and bonding, 80th edn. Springer, Berlin, pp 27–43

    Google Scholar 

  9. Ayers PW (2001) Theor Chem Acc 106:271–279

    Article  CAS  Google Scholar 

  10. Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  11. Zhan C-G, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184–4195

    Article  CAS  Google Scholar 

  12. Ng C-Y (2014) Annu Rev Phys Chem 65:197–224

    Article  CAS  Google Scholar 

  13. Carlson TA (1975) Photoelectron and auger spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  14. Berkowitz J (2012) Photoabsorption photoionization and photoelectron spectroscopy. Academic Press, Cambridge

    Google Scholar 

  15. Siegbahn K (1973) Electron spectroscopy for chemical analysis. Springer, NewYork

    Book  Google Scholar 

  16. Siegbahn K, Nordling C, Johansson G, Hedman J, Hedén PF, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA applied to free molecules. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  17. Turner DW, Baker C, Baker A, Brundle C (1970) Molecular photoelectron spectroscopy. Wiley, NewYok

    Google Scholar 

  18. Baker AD, Betteridge D (1972) Photoelectron spectroscopy. Pergamon Press, Oxford

    Google Scholar 

  19. Eland JHD (1974) Photoelectron spectroscopy. Butterworths, Dayton

    Google Scholar 

  20. Turner DW (1970) Annu Rev Phys Chem 21:107–128

    Article  CAS  Google Scholar 

  21. Worley SD (1971) Chem Rev 71:295–314

    Article  CAS  Google Scholar 

  22. Müller-Dethlefs K, Schlag EW (1998) Angew Chem Int Ed 37:1346–1374

    Article  Google Scholar 

  23. Neumark DM (2001) Annu Rev Phys Chem 52:255–277

    Article  CAS  Google Scholar 

  24. Stolow A, Bragg AE, Neumark DM (2004) Chem Rev 104:1719–1758

    Article  CAS  Google Scholar 

  25. Ng C-Y (1991) Vacuum ultraviolet photoionization and photodissociation of molecules and clusters. World Scientific, Singapore

    Book  Google Scholar 

  26. Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S (1981) Handbook Of HeI photoelectron spectra of fundamental organic molecules: ionization energies, ab initio assignments, and valence electronic structure for 200 molecules. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  27. Nakatsuji H, Hirao K (1977) Chem Phys Lett 47:569–571

    Article  CAS  Google Scholar 

  28. Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053–2065

    Article  CAS  Google Scholar 

  29. Nakatsuji H (1978) Chem Phys Lett 59:362–364

    Article  CAS  Google Scholar 

  30. Nakatsuji H (1979) Chem Phys Lett 67:334–342

    Article  CAS  Google Scholar 

  31. Nakatsuji H (1991) Chem Phys Lett 177:331–337

    Article  CAS  Google Scholar 

  32. Nakatsuji H (1997) Computational chemistry: reviews of current trends, 2nd edn. World Scientific, Singapore, pp 62–124

    Book  Google Scholar 

  33. Bartlett RJ (2012) Wiley Interdiscip Rev Comput Mol Sci 2:126–138

    Article  CAS  Google Scholar 

  34. Bartlett RJ, Stanton JF (2007) Reviews in computational chemistry. Wiley, NewYork, pp 64–169

    Google Scholar 

  35. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291–352

    Article  CAS  Google Scholar 

  36. Krylov AI (2008) Annu Rev Phys Chem 59:433–462

    Article  CAS  Google Scholar 

  37. Nakatsuji H (1979) Chem Phys Lett 67:329–333

    Article  CAS  Google Scholar 

  38. Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33–58

    Article  CAS  Google Scholar 

  39. Heully J, Malrieu J, Nebot-Gil I, Sanchez-Marin J (1996) Chem Phys Lett 256:589–594

    Article  CAS  Google Scholar 

  40. Miralles J, Castell O, Caballol R, Malrieu J-P (1993) Chem Phys 172:33–43

    Article  CAS  Google Scholar 

  41. Calzado CJ, Malrieu J-P, Cabrero J, Caballol RJ (2000) J Phys Chem A 104:11636–11643

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09 revision D.01. Gaussian Inc., Wallingford, CT

    Google Scholar 

  43. Stanton JF, Gauss J (1994) J Chem Phys 101:8938–8944

    Article  CAS  Google Scholar 

  44. Nooijen M, Bartlett RJ (1995) J Chem Phys 102:3629–3647

    Article  CAS  Google Scholar 

  45. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  46. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  47. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  48. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  49. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  50. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  51. Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  52. Davidson ER (1996) Chem Phys Lett 260:514–518

    Article  CAS  Google Scholar 

  53. Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244–9253

    Article  CAS  Google Scholar 

  54. Dunning TH (1970) J Chem Phys 53:2823–2833

    Article  CAS  Google Scholar 

  55. Dunning TH, Hay PJ (1977) Methods of electronic structure theory. In: Schaefer HF (ed) Modern theoretical chemistry, 3rd edn. Springer, NewYork, pp 1–27

    Google Scholar 

  56. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  57. Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639–9646

    Article  CAS  Google Scholar 

  58. Corzo HH, Galano A, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2015) J Phys Chem A 119:8813–8821

    Article  CAS  Google Scholar 

  59. Nakashima H, Honda Y, Shida T, Nakatsuji H (2015) Mol Phys 113:1728–1739

    Article  CAS  Google Scholar 

  60. Hasegawa J, Bureekaew S, Nakatsuji H (2007) J Photochem Photobiol A 189:205–210

    Article  CAS  Google Scholar 

  61. Miyahara T, Nakatsuji H (2015) J Phys Chem A 119:8269–8278

    Article  CAS  Google Scholar 

  62. Farrokhpour H, Fathi F (2011) J Comput Chem 32:2479–2491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Science Foundation supported this research through grant CHE-1565760 to Auburn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Ortiz.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corzo, H.H., Krosser, J.M., Galano, A. et al. Numerical test of SAC-CI methods for calculating vertical ionization energies. Theor Chem Acc 135, 236 (2016). https://doi.org/10.1007/s00214-016-1988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1988-4

Keywords

Navigation