Skip to main content
Log in

Exploring the validity of the Glidewell–Lloyd extension of Clar’s π-sextet rule: assessment from polycyclic conjugated hydrocarbons

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The Clar π-sextet rule was formulated as a tool to qualitatively assign the local aromatic character of six-membered rings in benzenoid species. This simple rule has been widely validated both experimentally and theoretically. In 1984, Glidewell and Lloyd reported an extension of this rule to polycyclic conjugated hydrocarbons having rings with any even number of carbon atoms in their structure. In this work, we assess the validity of the Glidewell–Lloyd extension in 69 polycyclic conjugated hydrocarbons composed of different combinations of four-, six-, and eight-membered rings. Our results support the validity of this extension with some exceptions that are discussed. Finally, a minor modification to the rule is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem I: Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z Phys 70:104–186

    Article  Google Scholar 

  2. Hückel E (1931) Quanstentheoretische Beiträge zum Benzolproblem II: Quantentheorie der induzierten Polaritäten. Z Phys 72:310–337

    Article  Google Scholar 

  3. Hückel E (1932) Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen: III. Z Phys 76:628–648

    Article  Google Scholar 

  4. Hückel E (1937) The theory of unsaturated and aromatic compounds. Z Elektrochem 43(752–788):827–849

    Google Scholar 

  5. Clar E (1972) The aromatic sextet. Wiley, New York

    Google Scholar 

  6. Solà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem 1:22

    Article  Google Scholar 

  7. Portella G, Poater J, Bofill JM, Alemany P, Solà M (2005) Local aromaticity of [n]Acenes, [n]Phenacenes, and [n]Helicenes (n = 1–9). J Org Chem 70:2509–2521

    Article  CAS  Google Scholar 

  8. Glidewell C, Lloyd D (1984) MNDO study of bond orders in some conjugated bi- and tri-cyclic hydrocarbons. Tetrahedron 40:4455–4472

    Article  CAS  Google Scholar 

  9. Vol’pin ME (1960) Non-benzenoid aromatic compounds and the concept of aromaticity. Russ Chem Rev 29:129–160

    Article  Google Scholar 

  10. Randić M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103:3449–3605

    Article  Google Scholar 

  11. Ginsburg D (1959) Non-benzenoid aromatic compounds. Interscience Publishers Inc., New York

    Google Scholar 

  12. Breslow R (2014) Novel aromatic and antiaromatic systems. Chem Rec 14:1174–1182

    Article  CAS  Google Scholar 

  13. Miyoshi H, Nobusue S, Shimizu A, Tobe Y (2015) Non-alternant non-benzenoid kekulenes: the birth of a new kekulene family. Chem Soc Rev 44:6560–6577

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc, Pittsburgh

    Google Scholar 

  15. Becke AD (1993) Density-functional thermochemistry. III: the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  18. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25: supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  19. Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  20. Feixas F, Matito E, Poater J, Sola M (2015) Quantifying aromaticity with electron delocalisation measures. Chem Soc Rev 44:6434–6451

    Article  CAS  Google Scholar 

  21. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  22. Matito E, Duran M, Solà M (2005) The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. J Chem Phys 122:014109

    Article  Google Scholar 

  23. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  24. Krygowski TM (1993) Crystallographic studies of inter- and intra-molecular interactions reflected in benzenoid hydrocarbons: nonequivalence of indices of aromaticity. J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  25. Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2:3381–3392

    Article  CAS  Google Scholar 

  26. Bader RFW, Stephens ME (1975) Spatial localization of the electronic pair and number distributions in molecules. J Am Chem Soc 97:7391–7399

    Article  CAS  Google Scholar 

  27. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  28. Fradera X, Poater J, Simon S, Duran M, Solà M (2002) Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theor Chem Acc 108:214–224

    Article  CAS  Google Scholar 

  29. Matito E, Poater J, Solà M, Duran M, Salvador P (2005) Comparison of the AIM delocalization index and the Mayer and fuzzy atom bond orders. J Phys Chem A 109:9904–9910

    Article  CAS  Google Scholar 

  30. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  31. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  32. Matito E (2006) ESI-3D: electron sharing indexes program for 3D molecular space partitioning. http://iqc.udg.es/~eduard/ESI. Girona: Institute of Computational Chemistry and Catalysis

  33. Keith A (2014) AIMall (v. 14.11.23). Overland Park: TK Gristmill Software (http://www.tkgristmill.com)

  34. Portella G, Poater J, Solà M (2005) Assessment of the Clar’s aromatic pi-sextet rule by means of PDI, NICS, and HOMA indicators of local aromaticity. J Phys Org Chem 18:785–791

    Article  CAS  Google Scholar 

  35. Zubarev DY, Boldyrev AI (2008) Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J Org Chem 73:9251–9258

    Article  CAS  Google Scholar 

  36. Popov IA, Boldyrev AI (2012) Chemical bonding in coronene, isocoronene, and circumcoronene. Eur J Org Chem 2012:3485–3491

    Article  CAS  Google Scholar 

  37. Kabuto C, Oda M (1980) Crystal and molecular structure of 9,10-diphenylbicyclo[6.2.0]decapentaene a 10 π aromatic compound. Tetrahedron Lett 21:103–106

    Article  CAS  Google Scholar 

  38. Papadakis R, Ottosson H (2015) The excited state antiaromatic benzene ring: a molecular Mr Hyde? Chem Soc Rev 44:6472–6493

    Article  CAS  Google Scholar 

  39. Baird NC (1972) Quantum organic photochemistry. II: resonance and aromaticity in the lowest 3.pi.pi.* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948

    Article  CAS  Google Scholar 

  40. Roberts JD, Streitwieser A, Regan CM (1952) Small-ring compounds. X: molecular orbital calculations of properties of some small-ring hydrocarbons and free radicals1. J Am Chem Soc 74:4579–4582

    Article  CAS  Google Scholar 

  41. Platt JR (1949) Classification of spectra of cata-condensed hydrocarbons. J Chem Phys 17:484–495

    Article  CAS  Google Scholar 

  42. Soncini A, Havenith RWA, Fowler PW, Jenneskens LW, Steiner E (2002) Control of the diatropic pi ring current in strained benzenes: effects of annelation with cyclopropa, cyclobuta, and cyclobutadieno clampling groups. J Org Chem 67:4753–4758

    Article  CAS  Google Scholar 

  43. Frank NL, Baldridge KK, Siegel JS (1995) Synthesis and characterization of trisbicyclo[2.1.1]hexabenzene, a highly strained bicycloannelated benzene. J Am Chem Soc 117:2102–2103

    Article  CAS  Google Scholar 

  44. Fowler PW, Havenith RWA, Jenneskens LW, Soncini A, Steiner E (2001) Survival and extinction of delocalised ring currents in clamped benzenes. Chem Commun (22):2386–2387

  45. Grant Hill J, Karadakov PB, Cooper DL (2006) The spin-coupled picture of clamped benzenes. Mol Phys 104:677–680

    Article  Google Scholar 

  46. Feixas F, Matito E, Poater J, Solà M (2007) Aromaticity of distorted benzene rings: exploring the validity of different indicators of aromaticity. J Phys Chem A 111:4513–4521

    Article  CAS  Google Scholar 

  47. Feixas F, Matito E, Poater J, Solà M (2008) On the performance of some aromaticity indices: a critical assessment using a test set. J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  48. Solà M, Feixas F, Jiménez-Halla JOC, Matito E, Poater J (2010) A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry 2:1156–1179

    Article  Google Scholar 

  49. Poater J, Visser R, Solà M, Bickelhaupt FM (2007) Polycyclic benzenoids: why kinked is more stable than straight. J Org Chem 72:1134–1142

    Article  CAS  Google Scholar 

  50. Poater J, Bickelhaupt FM, Solà M (2007) Didehydrophenanthrenes: structure, singlet-triplet splitting, and aromaticity. J Phys Chem A 111:5063–5070

    Article  CAS  Google Scholar 

  51. Dewar MJS, Li W-K (1974) MINDO [modified intermediate neglect of differential overlap]/3 study of the bisdehydrobenzenes. J Am Chem Soc 96:5569–5571

    Article  CAS  Google Scholar 

  52. Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds. Phys Chem Chem Phys 13:20690–20703

    Article  CAS  Google Scholar 

  53. Rosenberg M, Dahlstrand C, Kilså K, Ottosson H (2014) Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem Rev 114:5379–5425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain (Project CTQ2014-54306-P) and the Generalitat de Catalunya (Project 2014SGR931, Xarxa de Referència en Química Teòrica i Computacional, ICREA Academia 2014 prize for M.S., and Grant No. 2014FI_B 00429 to O.E.B.). The EU under the FEDER Grant UNGI10-4E-801 (European Fund for Regional Development) has also funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Solà.

Additional information

This work is dedicated to Prof. Dr. Alberto Vela as a proof of our admiration for his brilliant contributions to chemistry.

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bakouri, O., Poater, J., Feixas, F. et al. Exploring the validity of the Glidewell–Lloyd extension of Clar’s π-sextet rule: assessment from polycyclic conjugated hydrocarbons. Theor Chem Acc 135, 205 (2016). https://doi.org/10.1007/s00214-016-1970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1970-1

Keywords

Navigation