Skip to main content
Log in

Electron density analysis of bent aromatic molecules: intramolecular interactions in small paracyclophanes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electron distribution of molecules with distorted aromatic rings was analyzed using theoretical methods. The molecular geometries of Dewar benzene, the series of [n]paracyclophanes (n = 2, \(\ldots\), 6), and [1.1] and [2.2]paracyclophane were optimized at the QCISD/6-31++G(d,p) approximation. The partition of three-dimensional space provided by the quantum theory of atoms in molecules was applied using the electron densities obtained at this highly correlated level of theory. The analysis shows that Dewar benzene and [2]paracyclophane belong in a separate family. In the other cases, the distortion of the benzene moiety provokes a charge transfer to the phenylene group and induces a moderate single bond–double bond alternation that yields some decrease in the aromaticity of the carbon backbone. The charge concentrations accounted for by the Laplacian of the electron density and the quadrupole polarization of the ipso C atoms provide an explanation for their reactivity in electrophilic substitution reactions. The steric strain in paracyclophanes was analyzed in terms of the forces exerted on the electron density, the Ehrenfest forces. This analysis did not provide any evidence of repulsive forces taking place in the molecules. In particular, the aromatic rings in [2.2]paracyclophane are highly aromatic, with an important electron delocalization between aromatic rings and forces that are always attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsuji T, Ohkita M, Kawai H (2002) Bull Chem Soc Jpn 75(3):415

    Article  CAS  Google Scholar 

  2. Tsuji T (2004) In modern cyclophane chemistry. Wiley-VCH, chap. 3, pp 81–104

  3. Tobe Y (1994) In cyclophanes. Springer, chap. 1, pp 1–40. Top Curr Chem 172

  4. Zyss J, Ledoux I, Volkov S, Chernyak V, Mukamel S, Bartholomew GP, Bazan GC (2000) J Am Chem Soc 122(48):11956

    Article  CAS  Google Scholar 

  5. Ghasemabadi PG, Yao T, Bodwell GJ (2015) Chem Soc Rev 44:6494

    Article  CAS  Google Scholar 

  6. Cram DJ, Cram JM (1971) Acc Chem Res 4(6):204

    Article  CAS  Google Scholar 

  7. Batra A, Kladnik G, Vzquez H, Meisner JS, Floreano L, Nuckolls C, Cvetko D, Morgante A, Venkataraman L (2012) Nat Commun 3:1086

    Article  Google Scholar 

  8. Bally T, Matzinger S, Bednarek P (2006) J Am Chem Soc 128(24):7828

    Article  CAS  Google Scholar 

  9. Dransk M, Castao O, Kotora M, Bou P (2010) J Org Chem 75(3):576

    Article  Google Scholar 

  10. Havenith R, Jenneskens L, van Lenthe J (1999) J Mol Struc Theochem 492(1–3):217

    Article  CAS  Google Scholar 

  11. Tsuji T, Nishida S (1987) J Chem Soc Chem Commun 1189–1190

  12. Tsuji T, Nishida S (1988) J Am Chem Soc 110(7):2157

    Article  CAS  Google Scholar 

  13. Kostermans GBM, Bobeldijk M, Wolf WHD, Bickelhaupt F (1987) J Am Chem Soc 109(8):2471

    Article  CAS  Google Scholar 

  14. Hopf H (2012) Isr J Chem 52(1–2):18

    Article  CAS  Google Scholar 

  15. Jenneskens LW, Havenith RWA, Soncini A, Fowler PW (2011) Phys Chem Chem Phys 13:16861

    Article  CAS  Google Scholar 

  16. Bai M, Liang J, Xie L, Sanvito S, Mao B, Hou S (2012) J Chem Phys 136(10):104701

    Article  Google Scholar 

  17. Lyssenko KA, Antipin MY, Antonov DY (2003) Chem Phys Chem 4(8):817

    CAS  Google Scholar 

  18. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  19. Hope H, Bernstein J, Trueblood KN (1972) Acta Crystallogr Sect B Struct Sci 28:1733

    Article  CAS  Google Scholar 

  20. Caramori GF, Galembeck SE, Laali KK (2005) J Org Chem 70(8):3242

    Article  CAS  Google Scholar 

  21. Lyssenko KA, Korlyukov AA, Antipin MY (2005) Mendeleev Commun 15(3):90

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA,Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF,Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K,Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O,Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F,Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN,Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A,Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N,Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C,Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ,Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K,Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S,Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision d.01

  23. Keith TA (2016) Aimall (version 16.01.09, professional). aim.tkgristmill.com

  24. Elango M, Parthasarathi R, Subramanian V, Chattaraj P (2007) J Mol Struct Theochem 820(1–3):1

    Article  CAS  Google Scholar 

  25. Caramori GF, Galembeck SE (2007) J Phys Chem A 111(9):1705

    Article  CAS  Google Scholar 

  26. Feixas F, Matito E, Poater J, Solà M (2007) J Phys Chem A 111(20):4513

    Article  CAS  Google Scholar 

  27. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, 5th edn. Springer, New York

    Google Scholar 

  28. Matta CF, Hernández-Trujillo J (2003) J Phys Chem A 107(38):7496

    Article  CAS  Google Scholar 

  29. Matta CF, Hernández-Trujillo J (2005) J Phys Chem A 109(47):10798

    Article  CAS  Google Scholar 

  30. Farrugia LJ, Evans C, Tegel M (2006) J Phys Chem A 110(25):7952

    Article  CAS  Google Scholar 

  31. Poater J, Duran M, Solà M, Silvi B (2005) Chem Rev 105(10):3911

    Article  CAS  Google Scholar 

  32. Merino G, Vela A, Heine T (2005) Chem Rev 105(10):3812

    Article  CAS  Google Scholar 

  33. Feixas F, Matito E, Poater J, Solà M (2015) Chem Soc Rev 44:6434

    Article  CAS  Google Scholar 

  34. Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Phys Chem Chem Phys 13:20690

    Article  CAS  Google Scholar 

  35. Bickelhaupt F, de Wolf WH (1998) J Phys Org Chem 11(5):362

    Article  CAS  Google Scholar 

  36. Bader RFW, Chang C (1989) J Phys Chem 93(8):2946

    Article  CAS  Google Scholar 

  37. Moa MJG, Mosquera RA (2006) J Phys Chem A 110(17):5934

    Article  Google Scholar 

  38. Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249(56):633

    Article  Google Scholar 

  39. Dijkstra F, Van Lenthe JH (1999) Int J Quantum Chem 74(2):213

    Article  CAS  Google Scholar 

  40. Tsuji T, Okuyama M, Ohkita M, Kawai H, Suzuki T (2003) J Am Chem Soc 125(4):951

    Article  CAS  Google Scholar 

  41. Poater J, Bofill JM, Alemany P, Solà M (2006) J Org Chem 71(4):1700

    Article  CAS  Google Scholar 

  42. Dobrowolski MA, Cyranski MK, Wrobel Z (2016) Phys Chem Chem Phys 18:11813

    Article  CAS  Google Scholar 

  43. Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9(2):400

    Article  CAS  Google Scholar 

  44. Bultinck P, Rafat M, Ponec R, Gheluwe BV, Carbó-Dorca R, Popelier P (2006) J Phys Chem A 110(24):7642

    Article  CAS  Google Scholar 

  45. Garcia-Revilla M, Hernandez-Trujillo J (2009) Phys Chem Chem Phys 11:8425

    Article  CAS  Google Scholar 

  46. Estevez-Fregoso M, Hernandez-Trujillo J (2016) Phys Chem Chem Phys

  47. Matito E, Poater J, Duran M, Solà M (2005) J Mol Struct Theochem 727(1–3):165

    Article  CAS  Google Scholar 

  48. Ernst L (2000) Prog Nucl Magn Reson Spectrosc 37:47

    Article  CAS  Google Scholar 

  49. Gillespie R, Popelier P (2001) Chemical bonding and molecular geometry: from lewis to electron densities. Oxford University Press, Oxford

    Google Scholar 

  50. Hernández-Trujillo J, García-Cruz I, Martínez-Magadán JM (2005) Chem Phys 308(1–2):181

    Article  Google Scholar 

  51. Pendas AM (2002) J Chem Phys 117(3):965

    Article  CAS  Google Scholar 

  52. Bader RFW, Fang DC (2005) J Chem Theor Comput 1(3):403

    Article  CAS  Google Scholar 

  53. Martín A (2012) Pendás. J Chem Phys 137(13):134101

    Article  Google Scholar 

  54. Maza JR, Jenkins S, Kirk SR, Anderson JSM, Ayers PW (2013) Phys Chem Chem Phys 15:17823

    Article  CAS  Google Scholar 

  55. Cortés-Guzmán F, Cuevas G, Martín Pendás A (2015) J Hernández-Trujillo Phys Chem Chem Phys 17:19021

    Article  Google Scholar 

  56. Hernández Trujillo J, Cortés-Guzmán F, Fang DC, Bader RFW (2007) Faraday Discuss 135:79

    Article  Google Scholar 

  57. Grimme S (2004) Chem Eur J 10(14):3423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Bruno Landeros-Rivera for his useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Hernández-Trujillo.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

The author gratefully thanks DGTIC-UNAM for supercomputer resources (Project SC16-1-IR-71) and UNAM-DGAPA-PAPIIT (Project IN115215) for financial support.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Trujillo, J. Electron density analysis of bent aromatic molecules: intramolecular interactions in small paracyclophanes. Theor Chem Acc 135, 198 (2016). https://doi.org/10.1007/s00214-016-1960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1960-3

Keywords

Navigation