Skip to main content
Log in

An identification of the C–C bonding spin adduct in the spin trapping of N-methyl benzohydroxamic acid radical by 5,5-dimethyl-1-pyrroline N-oxide

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A detailed knowledge of the spin trapping of the radicals by spin traps is crucial for the elucidation of the reaction mechanisms involving radicals and the rational design of the novel efficient spin traps experimentally. In this study, the spin trapping of N-methyl benzohydroxamic acid radical (·N-MeBHA) produced in the reaction of 2,5-dichloro-1,4-benzoquinone (DCBQ) with N-methyl benzohydroxamic acid has been systematically investigated employing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap theoretically. The tautomerization behavior of ·N-MeBHA radical has been firstly investigated, and four tautomers including C- and N-centered forms have been located. After that, the nature of the formed spin adducts has been explored as well as the thermodynamic and kinetic parameters associated with the spin-trapping process. Moreover, the reaction of the ·N-MeBHA radical with the C-centered quinone ketoxy radical has been studied. Besides the available C–N bonding product identified experimentally, more stable C–C bonding products have also been observed. Additionally, significant catalytic role of explicit water molecules should be highlighted in the tautomerization reaction of the ·N-MeBHA radical and the keto–enol tautomerization reaction of the final products. This study demonstrates for the first time the possibility of the existences of the C-centered ·N-MeBHA radical and the C–C bonding product in the reaction of DCBQ and N-MeBHA, providing new insights into the reaction mechanisms between polyhalogenated quinones and hydroxamic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160

    Article  CAS  Google Scholar 

  2. Song Y, Wagner BA, Witmer JR, Lehmler HJ, Buettner GR (2009) Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones. Proc Natl Acad Sci USA 106:9725–9730

    Article  CAS  Google Scholar 

  3. Zhu BZ, Fan RM, Qu N (2011) A novel mechanism for metal-independent hydroxyl radical production by hydrogen peroxide and halogenated quinines. Mini Rev Org Chem 8:434–437

    Article  CAS  Google Scholar 

  4. Zhu BZ, Shan GQ, Huang CH, Kalyanaraman B, Mao L, Du YG (2009) Metal-independent decomposition of hydroperoxides by halogenated quinones: detection and identification of a quinone ketoxy radical. Proc Natl Acad Sci USA 106:11466–11471

    Article  CAS  Google Scholar 

  5. Zhu BZ, Kalyanaraman B, Jiang GB (2007) Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinines. Proc Natl Acad Sci USA 104:17575–17578

    Article  CAS  Google Scholar 

  6. Zhu BZ, Zhao HT, Kalyanaraman B, Liu J, Shan GQ, Du YG, Frei B (2007) Mechanism of metal-independent decomposition of organic hydroperoxides and formation of alkoxyl radicals by halogenated quinines. Proc Natl Acad Sci USA 104:3698–3702

    Article  CAS  Google Scholar 

  7. Yu Y, Wong J, Lovejoy DB, Kalinowski DS, Richardson DR (2006) Chelators at the cancer coalface: desferrioxamine to triapine and beyond. Clin Cancer Res 12:6876–6883

    Article  CAS  Google Scholar 

  8. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  CAS  Google Scholar 

  9. Li NN, Zhao D, Kirschbaum M, Zhang C, Lin CL, Todorov I, Kandeel F, Forman S, Zeng DF (2008) HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc Natl Acad Sci USA 105:4796–4801

    Article  CAS  Google Scholar 

  10. Zhu BZ, HarEl R, Kitrossky N, Chevion M (1998) New modes of action of desferrioxamine: scavenging of semiquinone radical and stimulation of hydrolysis of tetrachlorohydroquinone. Free Radic Biol Med 24:360–369

    Article  CAS  Google Scholar 

  11. Witte I, Zhu BZ, Lueken A, Magnani D, Stossberg H, Chevion M (2000) Protection by desferrioxamine and other hydroxamic acids against tetrachlorohydroquinone-induced cyto- and genotoxicity in human fibroblasts. Free Radic Biol Med 28:693–700

    Article  CAS  Google Scholar 

  12. Shan GQ, Yu A, Zhao CF, Huang CH, Zhu LY, Zhu BZ (2014) A combined experimental and computational investigation on the unusual molecular mechanism of the Lossen rearrangement reaction activated by carcinogenic halogenated quinones. J Org Chem 80:180–189

    Article  Google Scholar 

  13. Zhu BZ, Zhu JG, Mao L, Kalyanaraman B, Shan GQ (2010) Detoxifying carcinogenic polyhalogenated quinones by hydroxamic acids via an unusual double Lossen rearrangement mechanism. Proc Natl Acad Sci USA 107:20686–20690

    Article  CAS  Google Scholar 

  14. Zhu BZ, Huang CH (2011) An unexpected radical pathway for the reaction between 2,5-dichloro-1,4-benzoquinone and N-methyl benzohydroxamic acid. Free Radic Biol Med 51:S152

    Article  Google Scholar 

  15. Huang CH (2013) Molecular mechanisms for novel radical and rearrangement reactions mediated by halogenated quinoid carcinogens. University of Chinese Academy of Sciences, Beijing

    Google Scholar 

  16. Villamena FA, Hadad CM, Zweier JL (2004) Theoretical study of the spin trapping of hydroxyl radical by cyclic nitrones: a density functional theory approach. J Am Chem Soc 126:1816–1829

    Article  CAS  Google Scholar 

  17. Villamena FA, Hadad CM, Zweier JL (2005) Comparative DFT study of the spin trapping of methyl, mercapto, hydroperoxy, superoxide, and nitric oxide radicals by various substituted cyclic nitrones. J Phys Chem A 109:1662–1674

    Article  CAS  Google Scholar 

  18. Villamena FA, Merle JK, Hadad CM, Zweier JL (2005) Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 1. The thermodynamics of formation and its acidity. J Phys Chem A 109:6083–6088

    Article  CAS  Google Scholar 

  19. Villamena FA, Merle JK, Hadad CM, Zweier JL (2005) Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 2. The thermodynamics of decay and EPR spectral properties. J Phys Chem A 109:6089–6098

    Article  CAS  Google Scholar 

  20. Villamena FA, Locigno EJ, Rockenbauer A, Hadad CM, Zweier JL (2006) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 1. Carbon dioxide radical anion. J Phys Chem A 110:13253–13258

    Article  CAS  Google Scholar 

  21. Villamena FA, Locigno EJ, Rockenbauer A, Hadad CM, Zweier JL (2007) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 2. Carbonate radical anion. J Phys Chem A 111:384–391

    Article  CAS  Google Scholar 

  22. Villamena FA, Merle JK, Hadad CM, Zweier JL (2007) Rate constants of hydroperoxyl radical addition to cyclic nitrones: a DFT study. J Phys Chem A 111:9995–10001

    Article  CAS  Google Scholar 

  23. Villamena FA, Liu YP, Zweier JL (2008) Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide. 4. Conformational effects on the EPR hyperfine splitting constants. J Phys Chem A 112:12607–12615

    Article  CAS  Google Scholar 

  24. Villamena FA (2010) Superoxide radical anion adduct of 5,5-dimethyl-1-pyrroline N-oxide. 6. Redox properties. J Phys Chem A 114:1153–1160

    Article  CAS  Google Scholar 

  25. Zamora PL, Villamena FA (2012) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions. J Phys Chem A 116:7210–7218

    Article  CAS  Google Scholar 

  26. Aguilera-Venegas B, Speisky H (2014) Identification of the transition state for fast reactions: the trapping of hydroxyl and methyl radicals by DMPO-A DFT approach. J Mol Graph Model 52:57–70

    Article  CAS  Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Li P, Li Z, Sun Q, Wang WH, Bi SW, Du AJ, Zhao Y (2013) Insights into the mechanism of the reaction between tetrachloro-p-benzoquinone and hydrogen peroxide and their implications in the catalytic role of water molecules in producing the hydroxyl radical. ChemPhysChem 14:2737–2743

    Article  CAS  Google Scholar 

  30. Li P, Ma ZY, Wang WH, Song R, Zhai YZ, Bi SW, Sun HT, Bu YX (2011) Theoretical studies on the electron capture properties of the H2SO4···HOO· complex and its implications as an alternative source of HOOH. Phys Chem Chem Phys 13:5931–5939

    Article  CAS  Google Scholar 

  31. Feng WL, Ren C, Wang WH, Guo C, Sun Q, Li P (2016) Theoretical studies on the spin trapping of the 2-chloro-5-hydroxy-1,4-benzoquinone radical by 5,5-dimethyl-1-pyrroline N-oxide (DMPO): the identification of the C–O bonding spin adduct. RSC Adv 6:48099–48108

    Article  CAS  Google Scholar 

  32. Wang WH, Zhang XX, Li P, Sun Q, Li Z, Ren C, Guo C (2015) CO2 capture and separation from N2/CH4 mixtures by Co@B8/Co@B8 and M@B9/M@B9 (M = Ir, Rh, Ru) clusters: a theoretical study. J Phys Chem A 119:796–805

    Article  CAS  Google Scholar 

  33. Ren C, Wang WH, Guo C, Li P, Liu YX, Bi SW, Li Z, Sun Q (2015) Strong chemisorption of CO on M@Bn (M=Co, Ir, Rh, Ru, Ta, Nb, n = 8–10) clusters: an implication for wheel boron clusters as CO gas detectors. RSC Adv 5:82524–82530

    Article  CAS  Google Scholar 

  34. Li P, Ma ZY, Wang WH, Zhai YZ, Sun HT, Bi SW, Bu YX (2011) Theoretical studies on the coupling interactions in H2SO4···HOO····(H2O)n (n = 0–2) clusters: toward understanding the role of water molecules in the uptake of HOO· radical by sulfuric acid aerosols. Phys Chem Chem Phys 13:941–953

    Article  CAS  Google Scholar 

  35. Li P, Shen ZT, Wang WH, Ma ZY, Bi SW, Sun HT, Bu YX (2010) The capture of ·H and ·OH radicals by vitamin C and implications for the new source for the formation of the anion free radical. Phys Chem Chem Phys 12:5256–5267

    Article  CAS  Google Scholar 

  36. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  37. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  38. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  39. Pacios LF (2004) Topological descriptors of the electron density and the electron localization function in hydrogen bond dimers at short intermonomer distances. J Phys Chem A 108:1177–1188

    Article  CAS  Google Scholar 

  40. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  41. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  45. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  47. Wigner E (1932) Crossing of potential thresholds in chemical reactions. Z Phys Chem B 19:203–216

    Google Scholar 

  48. Canneaux S, Bohr F, Hénon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  CAS  Google Scholar 

  49. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  50. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 (revision E01). Gaussian Inc., Wallingford

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (21577076, 21303093, and 21003082) and the NSF of Shandong Province (ZR2014BM020). The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2013-05) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Wang or Ping Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Ren, C., Wang, W. et al. An identification of the C–C bonding spin adduct in the spin trapping of N-methyl benzohydroxamic acid radical by 5,5-dimethyl-1-pyrroline N-oxide. Theor Chem Acc 135, 190 (2016). https://doi.org/10.1007/s00214-016-1944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1944-3

Keywords

Navigation