Skip to main content
Log in

Investigation of agostic interaction through NBO analysis and its impact on β-hydride elimination and dehydrogenation: a DFT approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Agostic interactions have been investigated through NBO analysis tuning each part of H2LMMZCHR2 by varying metal centre and intramolecular groups in different positions of the molecule. We have calculated the energy transfer phenomena between donor and acceptor orbitals associated with the agostic bond by second-order perturbation analysis and characterized the acceptor orbitals for whether it is a vacant metal lone pair or molecular orbital associated with both metal and ligand. The investigation of agostic phenomenon by altering the orientation of the metal-associated ligand is another aspect of this work to reveal the orientation effect as one of the controlling factors of the agostic interaction. We have further studied the impact of agostic interaction on the two well-recognized reaction processes, namely β-hydride elimination and dehydrogenation for all the d0 systems under investigation. Both the reactions are found to be facilitated by agostic interaction, where the nature of agostic hydrogen varies from reaction to reaction. The complete work furnishes both characterization and reaction pathways to portray agostic phenomena by interconnecting the molecular geometry with the reaction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brookhart M, Green MLH, Parkin G (2007) Proc Natl Acad Sci 104:6908

    Article  CAS  Google Scholar 

  2. Clot E, Eisenstein O (2004) Princ Appl Density Funct Theory Inorg Chem II 113:1

    CAS  Google Scholar 

  3. Koga N, Obara S, Kitaura K, Morokuma K (1985) J Am Chem Soc 107:7109

    Article  CAS  Google Scholar 

  4. Popelier PLA, Logothetis G (1998) J Organomet Chem 555:101

    Article  CAS  Google Scholar 

  5. Tognetti V, Joubert L, Raucoules R, De Bruin T, Adamo C (2012) J Phys Chem A 116:5472

    Article  CAS  Google Scholar 

  6. Jabłoński M (2015) J Phys Chem A 119:4993

    Google Scholar 

  7. Scherer W, McGrady GS (2004) Angew Chem Int Ed 43:1782

    Article  CAS  Google Scholar 

  8. Scherer W, Wolstenholme DJ, Herz V, Eickerling G, Brück A, Benndorf P, Roesky PW (2010) Angew Chem Int Ed 49:2242

    Article  CAS  Google Scholar 

  9. Shaffer TD (1999) Book of abstracts. In: 218th ACS national meeting

  10. Shaffer TD, Jasper S (2000) Book of abstracts. In: 219th ACS national meeting

  11. Xu B, Wang Q, Wang X (2011) Comput Theor Chem 976:36

    Article  CAS  Google Scholar 

  12. Braga D, Grepioni F, Biradha K, Desiraju GR (1996) J Chem Soc Dalton Trans 20:3925

    Article  Google Scholar 

  13. Goldman AS, Goldberg KI (2004) Am Chem Soc 885:1–43

    CAS  Google Scholar 

  14. Lein M (2009) Coord Chem Rev 253:625

    Article  CAS  Google Scholar 

  15. Braga D, Grepioni F, Desiraju GR (1998) Chem Rev 98:1375

    Article  CAS  Google Scholar 

  16. Brookhart M, Green MLH (1983) J Organomet Chem 250:395

    Article  CAS  Google Scholar 

  17. Cassen A, Gloaguen Y, Vendier L, Duhayon C, Poblador-Bahamonde A, Raynaud C, Clot E, Alcaraz G, Sabo-Etienne S (2014) Angew Chem Int Ed 53:7569

    Article  CAS  Google Scholar 

  18. Yao W, Eisenstein O, Crabtree RH (1997) Inorg Chim Acta 254:105

    Article  CAS  Google Scholar 

  19. Dias AR, Galvão AM, Galvão AC (2001) J Organomet Chem 632:157

    Article  CAS  Google Scholar 

  20. Jaffart J, Etienne M, Maseras F, McGrady JE, Eisenstein O (2001) J Am Chem Soc 123:6000

    Article  CAS  Google Scholar 

  21. Roos BO, Lindh R, Cho HG, Andrews L (2007) J Phys Chem A 111:6420

    Article  CAS  Google Scholar 

  22. Thakur TS, Desiraju GR (2007) J Mol Struct (Thoechem) 810:143

    Article  CAS  Google Scholar 

  23. Dorsey CL, Gabbaï FP (2008) Organometallics 27:3065

    Article  CAS  Google Scholar 

  24. Pantazis DA, McGrady JE, Besora M, Maseras F, Etienne M (2008) Organometallics 27:1128

    Article  CAS  Google Scholar 

  25. Scheins S, Messerschmidt M, Gembicky M, Pitak M, Volkov A, Coppens P, Harvey BG, Turpin GC, Arif AM, Ernst RD (2008) J Am Chem Soc 131:6154

    Article  Google Scholar 

  26. Dunlop-Brière AF, Budzelaar PHM, Baird MC (2001) Organometallics 31:1591

    Article  Google Scholar 

  27. Hô M, Hernández-Lamoneda R (2012) Int J Quantum Chem 112:3630

    Article  Google Scholar 

  28. van der Eide EF, Yang P, Bullock RM (2013) Angew Chem Int Ed 52:10190

    Article  Google Scholar 

  29. Matsubara T, Koga N, Musaev DG, Morokuma K (1998) J Am Chem Soc 120:12692

    Article  CAS  Google Scholar 

  30. Andrews L, Cho HG, Wang X (2005) Angew Chem Int Ed 44:113–116

    Article  CAS  Google Scholar 

  31. Cho HG, Wang X, Andrews L (2005) J Am Chem Soc 127:465

    Article  CAS  Google Scholar 

  32. Alikhani ME, Zins EL, Silvi B (2015) Phys Chem Chem Phys 17:9258

    Article  Google Scholar 

  33. Sen K, Banu T, Debnath T, Ghosh D, Das AK (2014) Dalton Trans 43:8877

    Article  CAS  Google Scholar 

  34. Etienne M, Mathieu R, Donnadieu B (1997) J Am Chem Soc 119:3218

    Article  CAS  Google Scholar 

  35. Musaev DG, Froese RDJ, Svensson M, Morokuma K (1997) J Am Chem Soc 119:367

    Article  CAS  Google Scholar 

  36. De Abreu HA, De Almeida WB, Duarte HA, Fischer G, Heine T, Merino G, Seifert G (2006) J Mol Struct (Thoechem) 762:9

    Article  Google Scholar 

  37. Walter MD, Moorhouse RA, Urbin SA, White PS (2009) Brookhart, M. J Am Chem Soc 131:9055

    Article  CAS  Google Scholar 

  38. Walter MD, White PS, Brookhart M (2009) Chem Commun 42:6361

    Article  Google Scholar 

  39. Shultz LH, Tempel DJ, Brookhart M (2001) J Am Chem Soc 123:11539

    Article  CAS  Google Scholar 

  40. Berkaı¨ne N, Reinhardt P, Alikhani ME (2008) Chemical Physics 343:241

    Article  Google Scholar 

  41. Sauriol F, Sonnenberg JF, Chadder SJ, Dunlop-Brière AF, Baird MC, Budzelaar PHM (2010) J Am Chem Soc 132:13357

    Article  CAS  Google Scholar 

  42. Andrews L, Cho HG, Wang X (2005) Inorg Chem 44:4834–4842

    Article  CAS  Google Scholar 

  43. Chaplin AB, Poblador-Bahamonde AI, Sparkes HA, Howard JAK, Macgregor SA, Weller AS (2009) Chem Commun 2:244

    Article  Google Scholar 

  44. Crosby SH, Clarkson GJ, Rourke JP (2011) Organometallics 30:3603

    Article  CAS  Google Scholar 

  45. Thomas HR, Deeth RJ, Clarkson GJ, Rourke JP (2011) Organometallics 30:5641

    Article  CAS  Google Scholar 

  46. Thenraj M, Samuelson AG (2013) Organometallics 32:7141

    Article  CAS  Google Scholar 

  47. Barquera-Lozada JE, Obenhuber A, Hauf C, Scherer W (2013) J Phys Chem A 117:4304

    Article  CAS  Google Scholar 

  48. Rachlewicz K, Wang SL, Peng CH, Hung CH, Latos-Grażyński L (2003) Inorg Chem 42:7348

    Article  CAS  Google Scholar 

  49. Solans-Monfort X, Eisenstein O (2006) Polyhedron 25:339

    Article  CAS  Google Scholar 

  50. Vidal I, Melchor S, Alkorta I, Elguero J, Sundberg MR, Dobado JA (2006) Organometallics 25:5638

    Article  CAS  Google Scholar 

  51. Scherer W, Herz V, Brück A, Hauf C, Reiner F, Altmannshofer S, Leusser D, Stalke D (2011) Angew Chem Int Ed 50:2845

    Article  CAS  Google Scholar 

  52. Scherer W, Herz V, Hauf C (2012) In: Stalke D (ed) Electron density and chemical bonding I, vol 146. Springer, Berlin, Heidelberg, p 159

    Chapter  Google Scholar 

  53. Haaland A, Scherer W, Ruud K, McGrady GS, Downs AJ, Swang O (1998) J Am Chem Soc 120:3762

    Article  CAS  Google Scholar 

  54. McKean DC, Sean MG, Downs AJ, Scherer W, Haaland A (2001) Phys Chem Chem Phys 3:2781

    Article  CAS  Google Scholar 

  55. Eisenstein O, Jean Y (1985) J Am Chem Soc 107:1177

    Article  CAS  Google Scholar 

  56. Walter MD, White PS, Brookhart M (2013) N J Chem 37:1128

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01, Gaussian Inc., Wallingford

  58. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  59. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  60. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(2154–2161):18

    Google Scholar 

  61. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  62. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  63. Reed E, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  64. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0, Theoretical Chemistry Institute. University of Wisconsin, Madison, WI. http://nbo6.chem.wisc.edu/

  65. Cho HG, Kim TH, Andrews L (2006) Chem Asian J 1:404

    Article  CAS  Google Scholar 

  66. Cho HG, Andrews L (2004) Organometallic 23:4357

    Article  CAS  Google Scholar 

  67. Scherer W, Sirsch P, Shorokhov D, McGrady GS, Mason SA, Gardiner MG (2002) Chem Eur J 8:2324

    Article  CAS  Google Scholar 

  68. Perrin L, Maron L, Eisenstein O, Lappert MF (2003) N J Chem 27:121

    Article  CAS  Google Scholar 

  69. Dobado JA, Molina J, Uggla R, Sundberg MR (2006) Inorg Chem 39:2831

    Article  Google Scholar 

Download references

Acknowledgments

TD, TA and TB are grateful to the Council of Scientific and Industrial Research (CSIR), Government of India, for providing them research fellowships. AKD gratefully acknowledges a research grant under scheme number: SB/S1/PC-79/2012 from the Department of Science and Technology (DST), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit K. Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2016_1939_MOESM1_ESM.docx

Figures of the products obtained from β-hydride elimination and dehydrogenation and Table of NPA charges of all the reactants, TSs and products of both reaction processes. (DOCX 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, T., Ash, T., Banu, T. et al. Investigation of agostic interaction through NBO analysis and its impact on β-hydride elimination and dehydrogenation: a DFT approach. Theor Chem Acc 135, 175 (2016). https://doi.org/10.1007/s00214-016-1939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1939-0

Keywords

Navigation