Skip to main content
Log in

Perturbation theory of quantum resonances

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We propose a contribution to the theory of quantum resonances that combines complex absorbing potentials (CAP) with standard perturbation theory. We start from resolvents that depend on two variables, the complex energy z and a perturbation parameter \(\lambda\). The wave functions and the energies of the resonances are expanded in powers of \(\lambda\). It is shown that the zero-order terms correspond to the standard CAP method and that higher-order corrections are significant. The introduction of a convergence operator allows to control the convergence of the perturbation series. Due to the discretization of the continuum, the series are generally asymptotic. Finally, we relate the perturbation series to numerically convenient Taylor series. The theory is illustrated on two model examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feshbach H (1958) Ann Phys 5:357–390

    Article  CAS  Google Scholar 

  2. Feshbach H (1962) Ann Phys 19:287–313

    Article  CAS  Google Scholar 

  3. Kukulin VI, Krasnopol’sky VM, Horáček J (1989) Theory of resonances principles and applications. Academia, Praha

    Book  Google Scholar 

  4. Moiseyev N (2011) Non-hermitian quantum mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Jolicard G, Austin E (1985) Chem Phys Lett 121:106–110

    Article  CAS  Google Scholar 

  6. Riss UV, Meyer H-D (1993) J Phys B At Mol Opt Phys 26:4503–4536

    Article  CAS  Google Scholar 

  7. Muga J, Palao J, Navarro B, Egusquiza I (2004) Phys Rep 395:357–426

    Article  CAS  Google Scholar 

  8. Durand P, Paidarová I (1996) C R Acad Sci Paris IIb 322:555–562

    CAS  Google Scholar 

  9. Durand P, Paidarová I (1997) Czech J Phys 47:657–665

    Article  CAS  Google Scholar 

  10. Gemperle F, Gadea FX, Durand P (1998) Chem Phys Lett 291:517–522

    Article  CAS  Google Scholar 

  11. Paidarová I, Durand P (2010) In: Nicolaides C, Brändas E (eds) Unstable states in the continuous spectra I: analysis, concepts, methods, and results, vol 60. Elsevier Academic Press, Sant Diego, pp 1–49. Advances in Quantum Chemistry

  12. Durand P, Paidarová I (2013) J Phys B At Mol Opt Phys 46:075001

    Article  Google Scholar 

  13. Jagau TC, Krylov AI (2014) J Phys Chem Lett 5:3078–3085

    Article  CAS  Google Scholar 

  14. Mera H, Pedersen TG, Nikolic BK (2015) Phys Rev Lett 115:143001

    Article  Google Scholar 

  15. Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1988) Processus d’interaction entre photons et atomes, InterEditions et Editions du CNRS, English translation: (1992) Atom-Photon Interactions. Basic Processes and Applications. J. Wiley,

  16. Fano U (1935) Nuovo Cimento 12:154–161

    Article  CAS  Google Scholar 

  17. Fano U (1961) Phys Rev 124:1866–1878

    Article  CAS  Google Scholar 

  18. Bain R, Bardsley J, Junker B, Sukumar C (1974) J Phys B At Mol Opt Phys 7:2189–2202

    Article  CAS  Google Scholar 

  19. Durand P (1983) Phys Rev A 28:3184–3192

    Article  CAS  Google Scholar 

  20. Durand P, Paidarová I (1998) Phys Rev A 58:1867–1878

    Article  CAS  Google Scholar 

  21. Ehara M, Sommerfeld T (2012) Chem Phys Lett 537:107–112

    Article  CAS  Google Scholar 

  22. Sommerfeld T, Ehara M (2015) J Chem Phys 142:034105

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Roman Čurík for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Paidarová.

Appendix: Perturbative development of the resolvent

Appendix: Perturbative development of the resolvent

Let H be the Hamiltonian of a quantum system and \({\widehat{R}}\) the resolvent in the complementary space (see (5))

$$\begin{aligned} {\widehat{R}}=\frac{Q}{z-H}. \end{aligned}$$
(25)

It is useful to write \({\widehat{R}}\) in the form

$$\begin{aligned} {\widehat{R}}=\frac{1}{1-{\widehat{C}}}\,{\widehat{R}}^{(0)}. \end{aligned}$$
(26)

In this article, we chose

$$\begin{aligned} {\widehat{R}}^{(0)}=\frac{Q}{z-H(\lambda )};\quad {\widehat{C}}=\frac{Q}{z-H(\lambda )}\,\imath \,\lambda \,{\hat{\epsilon }};\quad H(\lambda )=H-\imath \,\lambda \,{\hat{\epsilon }}. \end{aligned}$$
(27)

\(H(\lambda )\) is the complex (non-Hermitian) Hamiltonian of the complex absorbing method. \(-\imath \,\lambda \,{\hat{\epsilon }}\) is a complex absorbing potential (CAP) which is introduced for computational reasons. It is a mathematical device that smooths the eigensolutions of H in the continuum when one uses finite basis sets. For investigating the quantum resonances through Green’s functions, one has to face the problem of the incompleteness of the basis sets for describing the continua. This is the main and crucial role devoted to \({\hat{\epsilon }}\). More precisely, \({\hat{\epsilon }}\) has to produce square-integrable functions tailored at convenience.

The expansion

$$\begin{aligned} \frac{1}{1-{\widehat{C}}}=1+{\widehat{C}}+{\widehat{C}}^{2}+\cdots \end{aligned}$$
(28)

introduced in (26) provides the perturbative expansion of \({\widehat{R}}\):

$$\begin{aligned} {\widehat{R}}={\widehat{R}}^{(0)}+{\widehat{R}}^{(1)}+{\widehat{R}}^{(2)}+\cdots ;\quad {\widehat{R}}^{(k)}={\widehat{C}}^k\,{\widehat{R}}^{(0)};\quad k=1,2,\ldots \end{aligned}$$
(29)

The first three terms of the expansion are

$$\begin{aligned} {\widehat{R}}^{(0)}(\lambda )& = \frac{Q}{z-H(\lambda )}\nonumber \\ {\widehat{R}}^{(1)}(\lambda )& = \frac{Q}{z-H(\lambda )}\,\imath \,\lambda \,{\hat{\epsilon }}\,\frac{Q}{z-H(\lambda )}\nonumber \\ {\widehat{R}}^{(2)}(\lambda )& = \frac{Q}{z-H(\lambda )}\,\imath \,\lambda \,{\hat{\epsilon }}\,\frac{Q}{z-H(\lambda )}\,\imath \,\lambda \,{\hat{\epsilon }} \frac{Q}{z-H(\lambda )}\nonumber \\ \cdots \end{aligned}$$
(30)

The above expansion is formally a standard perturbation series, but because \(\lambda\) appears also in the denominator of \({\widehat{R}}^{(0)}(\lambda )\), the terms in (30) have the structure of Padé approximants. Nevertheless, in the following, we keep the usual vocabulary of perturbation theory. For practical applications, it is convenient to express the quantities \({\widehat{R}}^{(1)}\), \({\widehat{R}}^{(2)}\), \({\widehat{R}}^{(3)},\ldots\) in terms of the derivatives of \({\widehat{R}}^{(0)}\) with respect to \(\lambda\):

$$\begin{aligned} {\widehat{R}}^{(k)}(\lambda )=(-1)^k\,\frac{\lambda ^k}{k!} \, \frac{{\mathrm {d}^{k}{\widehat{R}}^{(0)}(\lambda )}}{{\mathrm {d}\lambda ^k}};\qquad k=1,2,\ldots \end{aligned}$$
(31)

It can be checked that the expression (31) is true for \(k=1\) and \(k=2\). Its validity for any value of k is proved by recurrence:

The derivative of \({\widehat{R}}^{(k)}\) defined in (29) with respect to \(\lambda\) gives

$$\begin{aligned} \lambda \frac{{\mathrm {d}^{}{\widehat{R}}^{(k)}}}{{\mathrm {d}\lambda }}=k \,{\widehat{C}}^{k-1}\, \lambda \frac{{\mathrm {d}^{}{\widehat{C}}}}{{\mathrm {d}\lambda }}\,+\, {\widehat{C}}^{k} \lambda \frac{{\mathrm {d}^{}{\widehat{R}}^{(0)}}}{{\mathrm {d}\lambda }}. \end{aligned}$$
(32)

It can be checked that the two expressions

$$\begin{aligned} \lambda \frac{{\mathrm {d}^{}{\widehat{R}}^{(0)}}}{{\mathrm {d}\lambda }}=-{\widehat{C}}\, {\widehat{R}}^{(0)}\qquad \mathrm{and} \qquad \lambda \frac{{\mathrm {d}^{}{\widehat{C}}}}{{\mathrm {d}\lambda }}={\widehat{C}} \,(1-{\widehat{C}}) \end{aligned}$$
(33)

are true. Introducing (33) in (32) leads to the recurrence relation

$$\begin{aligned} (k+1){\widehat{R}}^{(k+1)}=k\,{\widehat{R}}^{(k)} -\lambda \frac{{\mathrm {d}^{}{\widehat{R}}^{(k)}}}{{\mathrm {d}\lambda }}. \end{aligned}$$
(34)

Finally, introducing (31) in the right-hand side of (34) leads to

$$\begin{aligned} {\widehat{R}}^{(k+1)}=(-1)^{k+1} \frac{\lambda ^{k+1}}{(k+1)!}\,\frac{{\mathrm {d}^{k+1}{\widehat{R}}^{(0)}}}{{\mathrm {d}\lambda ^{k+1}}}. \end{aligned}$$
(35)

The comparison between (31) and (35) demonstrates that if (31) is true for k, it also holds for \(k+1\). The recurrence is proven because  (31) is true for \(k=1\).

Inside the main text of this article, we consider Green’s functions derived from the reduced resolvent. From (9), (29) provides the expansion of the self-energy

$$\begin{aligned} R(z,\lambda )=R^{(0)}(z,\lambda )\,+\, R^{(1)}(z,\lambda )\,+\,R^{(2)}(z,\lambda )\,+\,\cdots \end{aligned}$$
(36)

The zero-order term reads

$$\begin{aligned} R^{(0)}(z,\lambda )=\langle \phi |H{\widehat{R}}^{(0)} H |\phi \rangle \end{aligned}$$
(37)

and

$$\begin{aligned} R^{(k)}(z,\lambda )=(-1)^k\,\frac{\lambda ^k}{k!}\frac{{\mathrm {d}^{}R^{(0)}}}{{\mathrm {d}\lambda ^k}};\quad k=1,2,\ldots \end{aligned}$$
(38)

Note that if the expansion (36) is finite, R(z) becomes dependent on \(\lambda\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, P., Paidarová, I. Perturbation theory of quantum resonances. Theor Chem Acc 135, 159 (2016). https://doi.org/10.1007/s00214-016-1912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1912-y

Keywords

Navigation