Skip to main content
Log in

Astaxanthin interacting with metal clusters: free radical scavenger and photovoltaic materials

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This investigation mainly intends to study the interaction of ASTA with metal clusters of up to ten atoms. Copper, silver, and gold atoms are used in this analysis. Lambda maximum values, electron donor acceptor capacity (to see the antiradical properties of these compounds), and the HOMO–LUMO gaps (to analyze the potential application of these molecules as materials for solar cells) are reported. None of these properties is linearly dependent on the number of metal atoms in the cluster. Contrarily, there is an even–odd oscillation. The bond of metal atoms and clusters to ASTA generates products (ASTA-M x ) that are redder in color, concurring with experimental results previously reported for shrimps. The production of redder compounds is confusing for consumers of red food products and could cause a health problem. ASTA-M x molecules are better electron donors and better electron acceptors than ASTA, making them become better free radical scavengers. ASTA-Cu4, ASTA-Cu10, and ASTA-Au7 have low values of the ionization energies and high values of the electron affinity; i.e., there are good electron donors and good electron acceptors. They also have the lowest values (around 2.5 eV) of the HOMO–LUMO gap. These results could be useful for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Choi J, Corder NLB, Koduru B, Wang Y (2014) Free Radic Biol Med 72:267–284

    Article  CAS  Google Scholar 

  2. Saeidnia S, Abdillahi M (2013) Toxicol Appl Pharmacol 273:442–455

    Article  CAS  Google Scholar 

  3. Yan MH, Wang X, Zhu X (2013) Free Radic Biol Med 62:90–101

    Article  CAS  Google Scholar 

  4. Lin MT, Beal MF (2006) Nature 443:787–795

    Article  CAS  Google Scholar 

  5. Reddy PHJ (2006) Neurochemistry 96:1–13

    Article  CAS  Google Scholar 

  6. Schöneich C (2005) Biochim Biophys Acta 1703:111–119

    Article  Google Scholar 

  7. Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ (2002) Free Radic Biol Med 32:1264–1275

    Article  CAS  Google Scholar 

  8. Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA (2000) Free Radic Biol Med 28:831–834

    Article  CAS  Google Scholar 

  9. Perry G, Castellani RJ, Hirai K, Smith MA (1998) J Alzheimer’s Dis 1:45–55

    CAS  Google Scholar 

  10. Caroso M, Ferreira ICFR (2013) Food Chem Toxicol 51:15–25

    Article  Google Scholar 

  11. Martínez A, Barbosa A (2008) J Phys Chem B 112:16945–16951

    Article  Google Scholar 

  12. Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037–9042

    Article  Google Scholar 

  13. Avelar M, Martínez A (2012) J Mex Chem Soc 56:250–256

    CAS  Google Scholar 

  14. Martínez A (2009) J Phys Chem B 113:4915–4921

    Article  Google Scholar 

  15. Martínez A, Vargas R, Galano A (2009) J Phys Chem B 113:12113–12120

    Article  Google Scholar 

  16. Galano A (2007) J Phys Chem B 111:12898–12908

    Article  CAS  Google Scholar 

  17. Martínez A, Hernández-Marin E, Galano A (2012) Food Funct 3:442–450

    Article  Google Scholar 

  18. Burton GW, Ingold KU (1984) Science 224:569–573

    Article  CAS  Google Scholar 

  19. Goodwin TW (1984) The biochemistry of carotenoids. Chapman and Hall, New York

    Book  Google Scholar 

  20. Krinsky NI (2001) Nutrition 17:815–817

    Article  CAS  Google Scholar 

  21. Olson VA, Owens IPF (1998) Trends Ecol Evol 13:510–514

    Article  CAS  Google Scholar 

  22. Hill GE (1991) Nature 350:337–339

    Article  Google Scholar 

  23. Hill GE, McGraw KJ (2006) Bird coloration. Mechanisms and measurements, vol 1. Harvard University Press, Cambridge

    Google Scholar 

  24. Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Biochem J 330:1173–1178

    Article  CAS  Google Scholar 

  25. Morel I, Lescoat G, Cillard P (1994) Methods Enzymol 234:437

    Article  CAS  Google Scholar 

  26. Paganga G, Al-Hashim A, Khodr H, Scott BC, Aruoma OI, Hider RC, Hlliwell B, Rice-Evans CA (1996) Redox Rep 3:359–364

    Google Scholar 

  27. Gao Y, Konovalova TA, Lawrence JN, Smith MA, Nunley J, Schad R, Kispert LD (2003) J Phys Chem B 107:2459–2465

    Article  CAS  Google Scholar 

  28. Polyakov NE, Focsan AL, Bowman MK, Kispert LD (2010) J Phys Chem B 114:16968–16977

    Article  CAS  Google Scholar 

  29. Hernández-Marin E, Barbosa A, Martínez A (2012) Molecules 17:1039–1054

    Article  Google Scholar 

  30. Maoka T (2011) Mar Drugs 9:278–293

    Article  CAS  Google Scholar 

  31. Parisenti J, Beirão LH, Maraschin M, Mouriño JL, Do Nascimento Vieira F, Bedin LH, Rodrigues E (2011) Aquac Nutr 17:e530–e535

    Article  Google Scholar 

  32. Special Issue (2012) Carotenoids in nutrition and health—developments and future trends. Mol Nutr Food Res 56:1–352

    Google Scholar 

  33. Soto-Salanova MF (2003) Natural pigments: practical experiences. In: Garnsworthy PC, Wiseman J (eds) Recent advances in animal nutrition. Nottingham University Press, Nottingham, pp 67–75

    Google Scholar 

  34. Vernon-Carter EJ, Ponce-Palafox JT, Pedroza-Islas R (1996) Arch Latinoam Nutr 46:243–246

    CAS  Google Scholar 

  35. Lucien-Brun H, Vidal F (2006) AQUA Culture Asia Pacific Magazine. 2(3):32–33

  36. Martínez A, Romero Y, Castillo T, Mascaró M, López-Rull I, Simões N, Arcega-Cabrera F, Gaxiola G, Barbosa A (2014) PLoS One 9:e107673

    Article  Google Scholar 

  37. Bonačić-Koutecký V, Kulesza A, Gell L, Mitrić R, Antoine R, Bertorelle F, Hamouda R, Rayane D, Broyer M, Tabarind T, Dugourdde P (2012) Phys Chem Chem Phys 14:9282–9290

    Article  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 09, revision A.08 Inc. Wallingford

  39. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  41. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  42. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  43. Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) J Phys Chem 110:15624–15632

    Article  CAS  Google Scholar 

  44. Bjornsson R, Bühl M (2010) Dalton Trans 39:5319–5324

    Article  CAS  Google Scholar 

  45. Jug K, Zimmermann B, Calaminici P, Köster AM (2002) J Chem Phys 116:4497–4507

    Article  CAS  Google Scholar 

  46. Fournier R (2002) J Chem Phys 115:2165–2177

    Article  Google Scholar 

  47. Martínez A (2010) J Phys Chem C 114:21240–21246

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by DGAPA-PAPIIT, Consejo Nacional de Ciencia y Tecnología (CONACyT), and resources provided by the Instituto de Investigaciones en Materiales (IIM). This work was carried out using a NES supercomputer, provided by Dirección General de Cómputo y Tecnologías de Información y Comunicación (DGTIC), Universidad Nacional Autónoma de México (UNAM). I would like to thank the DGTIC of UNAM for their excellent and free supercomputing services and Caroline Karslake (Masters, Social Anthropology, Cambridge University, England) for reviewing the grammar and style of the text in English. The author would like to acknowledge Oralia L Jiménez A., María Teresa Vázquez and Caín González for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana MartĂ­nez.

Additional information

Paper dedicated to the UNESCO International Year of Light and Light-based Technologies (IYL 2015). TCA special Issue on Health & Energy from the Sun: a Computational Perspective.

Published as part of the special collection of articles “Health & Energy from the Sun”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MartĂ­nez, A. Astaxanthin interacting with metal clusters: free radical scavenger and photovoltaic materials. Theor Chem Acc 135, 130 (2016). https://doi.org/10.1007/s00214-016-1882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1882-0

Keywords

Navigation