Skip to main content
Log in

On the formation of beryllium bonds where radicals act as electron donors

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The complexes between BeX2 (X = F, H) with CH3, CH2CH3, CH(CH3)2 and C(CH3)3 radicals have been characterized by using the MP2 and CCSD(T) methods and AIM procedure. The formation of these complexes is found to originate from the interaction between the positively charged Be atom and the unpaired electron of the radicals, and this interaction is closed shell in essence. During complexation with radicals, all the BeX2 molecules feature redshifted X–Be–X antisymmetric stretching vibrations, according well with the lengthening of Be–X bonds. According to the computed interaction energies, methyl substitution imposes a positive effect on the complex formation. Energy decomposition analysis indicate that the stability of the topic complexes mainly comes from the attractive electrostatic and polarization terms, which is similar to the case of π-beryllium bonds. By comparisons with some related systems, it can be concluded that the bond strength increases in the order single-electron hydrogen bond < single-electron sodium bond < single-electron lithium bond < single-electron beryllium bond ≈ π-beryllium bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2009) Theor Chem Acc 126:1–14

    Article  Google Scholar 

  2. Calhorda MJ (2000) Chem Commun 10:801–809

    Article  Google Scholar 

  3. Cybulski H, Tyminska E, Sadlej J (2006) Chem Phys Chem 7:629–639

    CAS  Google Scholar 

  4. Harigai M, Kataoka M, Imamoto Y (2006) J Am Chem Soc 128:10646–10647

    Article  CAS  Google Scholar 

  5. Nishiyama Y, Langan P, Chanzy H (2002) J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  6. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, Oxford

    Google Scholar 

  7. Li Q, Wang Y, Li W, Cheng J, Gong B, Sun J (2009) Phys Chem Chem Phys 11:2402–2407

    Article  CAS  Google Scholar 

  8. Yin J, Wei P, Li Q, Liu Z, Li W, Cheng J, Gong B (2009) J Mol Struct 916:28–32

    Article  CAS  Google Scholar 

  9. Li ZF, Zhang XT, Li HX, Zhu YC, Yang XP (2011) Chem Phys Lett 510:273–277

    Article  CAS  Google Scholar 

  10. Gierszal KP, Davis JG, Hands MD, Wilcox DS, Slipchenko LV, Ben-Amotz D (2011) J Phys Chem Lett 2:2930–2933

    Article  CAS  Google Scholar 

  11. Nishio M (2011) Phys Chem Chem Phys 13:13873–13900

    Article  CAS  Google Scholar 

  12. Li RY, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2005) Int J Quantum Chem 103:157–166

    Article  CAS  Google Scholar 

  13. Li ZR, Wu D, Li ZS, Huang XR, Tao FM, Sun CC (2009) J Phys Chem A 105:1163

    Google Scholar 

  14. Hao XY, Li ZR, Wu D, Li ZS, Sun CC (2003) J Chem Phys 118:10939

    Article  CAS  Google Scholar 

  15. Hao XY, Li ZR, Wu D, Wang Y, Li ZS, Sun CC (2003) J Chem Phys 118:83

    Article  CAS  Google Scholar 

  16. Tsurusawa T, Iwata S (2000) J Chem Phys 112:5705–5710

    Article  CAS  Google Scholar 

  17. Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2003) Chem Phys Lett 375:91–95

    Article  CAS  Google Scholar 

  18. Chen YH, Tschuikow-Roux E, Rauk A (1991) J Phys Chem 95:9832–9836

    Article  CAS  Google Scholar 

  19. Tang K, Shi FQ (2007) Int J Quantum Chem 107:665–669

    Article  CAS  Google Scholar 

  20. Li Y, Wu D, Li ZR, Chen W, Sun CC (2006) J Chem Phys 125:084317

    Article  Google Scholar 

  21. Li ZF, Zhu YC, Li HX (2009) Phys Chem Chem Phys 11:11113–11120

    Article  CAS  Google Scholar 

  22. Li ZF, Li HX, Zhu YC, Zuo GF (2009) Chem Phys Lett 482:160–164

    Article  CAS  Google Scholar 

  23. Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) J Chem Theory Comput 5:2763–2771

    Article  Google Scholar 

  24. Eskandari K (2012) J Mol Model 18:3481–3487

    Article  CAS  Google Scholar 

  25. Albrecht L, Boyd RJ, Mo O, Yanez M (2012) Phys Chem Chem Phys 14:14540–14547

    Article  CAS  Google Scholar 

  26. Martín-Sómer A, Lamsabhi AM, Mó O, Yáñez M (2012) Comput Theor Chem 998:74–79

    Article  Google Scholar 

  27. Li QZ, Liu XF, Li R, Cheng JB, Li WZ (2012) Spectrochim Acta A 90:135–140

    Article  Google Scholar 

  28. Alkorta I, Elguero J, Yanez M, Mo O (2014) Phys Chem Chem Phys 16:4305–4312

    Article  CAS  Google Scholar 

  29. Villanueva EF, Mo O, Yanez M (2014) Phys Chem Chem Phys 16:17531–17536

    Article  CAS  Google Scholar 

  30. Zhao Q, Feng D, Sun Y, Hao J (2011) Comput Theor Chem 964:188–192

    Article  CAS  Google Scholar 

  31. Wojtulewski S, Grabowski SJ (2002) J Mol Struct 605:235–240

    Article  CAS  Google Scholar 

  32. Hix S, Kadiiska MB, Mason RP, Augusto O (2000) Chem Res Toxicol 13:1056–1064

    Article  CAS  Google Scholar 

  33. Romieu A, Bellon S, Gasparutto D, Cadet J (2000) Org Lett 2:1085–1088

    Article  CAS  Google Scholar 

  34. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  35. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  36. Woon DE, Dunning TH (1994) J Chem Phys 100:2975

    Article  CAS  Google Scholar 

  37. Carpenter J, Weinhold F (1988) J Mol Struct Theochem 169:41–62

    Article  Google Scholar 

  38. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  39. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  40. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  41. Su PF, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  43. Biegler-Konig F, Schonbohm J, Bayles D (2001) J Comput Chem 22:545–559

    Article  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

  45. Batsanov S (2001) Inorg Mater 37:871–885

    Article  CAS  Google Scholar 

  46. Bader RWF (1990) Atoms in molecules, a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  47. Bader RFW, Essén H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science foundation of China (Grant Nos. 21173095, 21573089, 21303066) and State Key Development Program for Basic Research of China (Grant No. 2013CB834801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Wu, D., Li, Y. et al. On the formation of beryllium bonds where radicals act as electron donors. Theor Chem Acc 135, 112 (2016). https://doi.org/10.1007/s00214-016-1877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1877-x

Keywords

Navigation