Skip to main content
Log in

Conformational free energy surfaces of non-ionized glycine in aqueous solution

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ab initio calculations on glycine and quantum mechanical/molecular mechanical molecular dynamics simulations (QM/MM-MD) on solvated non-ionized glycine were performed to explore the free energy landscapes of non-ionic glycine conformers in aqueous solution. Among nine different conformers of glycine, QM/MM-MD simulations found ttc and gtc conformers stable in addition to ttt, ccc, gtt, tct and gct which were well known as stable isomers in pure QM calculation. The stabilities of ttc and gtc come from a strong solvation at their carboxylic group side (–COOH) in solution. The preferred rotation along C–C (φ) as compared to C–O (θ) in both pure QM calculations and QM/MM-MD indicates the importance of intramolecular effects in determining relative free energies. On the other hand, the existence of stable ttc and gtc conformers only in solution phase clearly shows the importance of intermolecular interaction by explicit solvents. The same intermolecular interactions have a mixed effect on the free energy barriers. They reduced the barriers of A (ccc) → B (gtc) and A (ccc) → C (gct) isomerizations as compared to the ab initio or PCM results. At the same time, they also increased the barriers of B (ttc, gtc) → D (ttt, gtt). In short, the conformational free energy surfaces of non-ionized glycine in solution are largely different from the corresponding potential energy surfaces of gas phase. The fact that the initial conformer for tautomerization ccc is stable makes the N → Z tautomerization facile. However, concurrently, diverse conformational isomerizations to ccc make the tautomerization dependent on the isomerizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Affinities of amino acid side chains for solvent water. Biochemistry 20:849–855

    Article  CAS  Google Scholar 

  2. Balabin RM (2010) The first step in glycine solvation: the glycine–water complex. J Phys Chem B 114:15075–15078

    Article  CAS  Google Scholar 

  3. Kundrat MD, Autschbach J (2008) Ab initio and density functional theory modeling of the chiroptical response of glycine and alanine in solution using explicit solvation and molecular dynamics. J Chem Theory Comput 4:1902–1914

    Article  CAS  Google Scholar 

  4. Fernández-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2000) A direct-dynamics study of the zwitterion-to-neutral interconversion of glycine in aqueous solution. J Chem Phys 113:9714–9721

    Article  Google Scholar 

  5. Balta B, Aviyente V (2004) Solvent effects on glycine II. Water-assisted tautomerization. J Comput Chem 25:690–703

    Article  CAS  Google Scholar 

  6. Tian SX, Sun X, Cao R, Yang J (2009) Thermal stabilities of the microhydrated zwitterionic glycine: a kinetics and dynamics study. J Phys Chem A 113:480–483

    Article  CAS  Google Scholar 

  7. Balabin RM (2010) Conformational equilibrium in glycine: experimental jet-cooled raman spectrum. J Phys Chem Lett 1:20–23

    Article  CAS  Google Scholar 

  8. Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Glycine conformers: a never-ending story? Phys Chem Chem Phys 15:1358–1363

    Article  CAS  Google Scholar 

  9. Bazsó G, Magyarfalvi G, Tarczay G (2012) Tunneling lifetime of the Ttc/VIp conformer of glycine in low-temperature matrices. J Phys Chem A 116:10539–10547

    Article  Google Scholar 

  10. Suenram RD, Lovas FJ (1978) Millimeter wave spectrum of glycine. J Mol Spectrosc 72:372–382

    Article  CAS  Google Scholar 

  11. Schäfer L, Sellers HL, Lovas FJ, Suenram RD (1980) Theory versus experiment: the case of glycine. J Am Chem Soc 102:6566–6568

    Article  Google Scholar 

  12. Suenram RD, Lovas FJ (1980) Millimeter wave spectrum of glycine. A new conformer. J Am Chem Soc 102:7180–7184

    Article  CAS  Google Scholar 

  13. Brown RD, Godfrey PD, Storey JWV, Bassez MP (1978) Microwave spectrum and conformation of glycine. J Chem Soc, Chem Commun 13:547–548

    Article  Google Scholar 

  14. Godfrey PD, Brown RD (1995) Shape of glycine. J Am Chem Soc 117:2019–2023

    Article  CAS  Google Scholar 

  15. Iijima K, Tanaka K, Onuma S (1991) Main conformer of gaseous glycine: molecular structure and rotational barrier from electron diffraction data and rotational constants. J Mol Struct 246:257–266

    Article  CAS  Google Scholar 

  16. Stepanian SG, Reva ID, Radchenko ED, Rosado MTS, Duarte MLTS, Fausto R, Adamowicz L (1998) Matrix-isolation infrared and theoretical studies of the glycine conformers. J Phys Chem A 102:1041–1054

    Article  CAS  Google Scholar 

  17. Császár AG (1992) Conformers of gaseous glycine. J Am Chem Soc 114:9568–9575

    Article  Google Scholar 

  18. Hu C, Shen M, Schaefer HF III (1993) Glycine conformational analysis. J Am Chem Soc 115:2923–2929

    Article  CAS  Google Scholar 

  19. Barone V, Adamo C, Lelj F (1995) Conformational behavior of gaseous glycine by a density functional approach. J Chem Phys 102:364

    Article  CAS  Google Scholar 

  20. Ding Y, Krogh-Jespersen K (1992) The glycine zwitterion does not exist in the gas phase: results from a detailed ab initio electronic structure study. Chem Phys Lett 199:261–266

    Article  CAS  Google Scholar 

  21. Yu D, Armstrong DA, Rauk A (1992) Hydrogen bonding and internal rotation barriers of glycine and its zwitterions (hypothetical) in the gas phase. Can J Chem 70:1762–1772

    Article  CAS  Google Scholar 

  22. Jensen JH, Gordon MS (1991) Conformational potential energy surface of glycine: a theoretical study. J Am Chem Soc 113:7917–7924

    Article  CAS  Google Scholar 

  23. Nguyen DT, Scheiner AC, Andzelm JW, Sirois S, Salahub DR, Hagler AT (1997) A density functional study of the glycine molecule: comparison with post-Hartree–Fock calculations and experiment. J Comput Chem 18:1609–1631

    Article  CAS  Google Scholar 

  24. Balta B, Basma M, Aviyente V, Zhu C, Lifshitz C (2000) Structures and reactivity of gaseous glycine and its derivatives. Int J Mass Spectrom 201:69–85

    Article  CAS  Google Scholar 

  25. Pacios LF, Gómez PC (2001) Intramolecular interactions and intramolecular hydrogen bonding in conformers of gaseous glycine. J Comput Chem 22:702–716

    Article  CAS  Google Scholar 

  26. Tortonda FR, Pascual-Ahuir JL, Silla E, Tuñón I (1996) Why is glycine a zwitterion in aqueous solution? A theoretical study of solvent stabilising factors. Chem Phys Lett 260:21–26

    Article  CAS  Google Scholar 

  27. Bonaccorsi R, Palla P, Tomasi J (1984) Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms. An ab initio study. J Am Chem Soc 106:1945–1950

    Article  CAS  Google Scholar 

  28. Kassab E, Langlet J, Evleth E, Akacem Y (2000) Theoretical study of solvent effect on intramolecular proton transfer of glycine. J Mol Struct (Theochem) 531:267–282

    Article  CAS  Google Scholar 

  29. Tuñón I, Silla E, Millot C, Martins-Costa MTC, Ruiz-López MF (1998) Intramolecular proton transfer of glycine in aqueous solution using quantum mechanics-molecular mechanics simulations. J Phys Chem A 102:8673–8678

    Article  Google Scholar 

  30. Bandyopadhyay P, Gordon MS, Menucci B, Tomasi J (2002) An integrated effective fragment—polarizable continuum approach to solvation: theory and application to glycine. J Chem Phys 116:5023–5032

    Article  CAS  Google Scholar 

  31. Senn HM, Margl PM, Schmid R, Ziegler T, Blöchl PE (2003) Ab initio molecular dynamics with a continuum solvation model. J Chem Phys 118:1089–1100

    Article  CAS  Google Scholar 

  32. Truong TN, Stefanovich EV (1995) Analytical first and second energy derivatives of the generalized conductorlike screening model for free energy of solvation. J Chem Phys 103:3709–3717

    Article  CAS  Google Scholar 

  33. Slifkin MA, Ali SM (1984) Thermodynamics properties of the activation glycine zwitterion protonation reaction. J Mol Liq 28:215–221

    Article  CAS  Google Scholar 

  34. Tortonda FR, Pascual-Ahuir JL, Silla E, Tuñón I (2003) A theoretical study of solvent effects on the conformational equilibria of neutral glycine in aqueous solution. J Mol Struct (Theochem) 623:203–210

    Article  CAS  Google Scholar 

  35. Selvarengan P, Kolandaivel P (2002) Studies of solvent effects on conformers of glycine molecule. J Mol Struct (Theochem) 617:99–106

    Article  CAS  Google Scholar 

  36. Gontrani L, Mennucci B, Tomasi J (2000) Glycine and alanine: a theoretical study of solvent effects upon energetics and molecular response properties. J Mol Struct (Theochem) 500:113–127

    Article  CAS  Google Scholar 

  37. Yoshida NO, Kataoka K, Nagaoka M, Yambe T (2000) Structure optimization via free energy gradient method: application to glycine zwitterion in aqueous solution. J Chem Phys 113:3519–3524

    Article  Google Scholar 

  38. Chakraborty D, Manogaran S (1998) Vibrational analysis of glycine zwitterion: an ab initio study. Chem Phys Lett 294:56–64

    Article  CAS  Google Scholar 

  39. Tortonda FR, Pascual-Ahuir J-L, Silla E, Tuñón I, Ramirez FJ (1998) Aminoacid zwitterions in solution: geometric, energetic, and vibrational analysis using density functional theory-continuum model calculations. J Chem Phys 109:592–602

    Article  CAS  Google Scholar 

  40. Aikens CM, Gordon MS (2006) Incremental solvation of nonionized and zwiterionic glycine. J Am Chem Soc 128:12835–12850

    Article  CAS  Google Scholar 

  41. Tuñón I, Silla E, Ruiz-López MF (2000) On the tautomerization process of glycine in aqueous solution. Chem Phys Lett 321:433–437

    Article  Google Scholar 

  42. Choi CH, Re S, Feig M, Sugita Y (2012) Quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD) study on intra-molecular proton transfer of glycine in water. Chem Phys Lett 539:218–221

    Article  Google Scholar 

  43. Ghosh MK, Re S, Feig M, Sugita Y, Choi CH (2013) Interionic hydration structures of NaCl in aqueous solution: a combined study of quantum mechanical cluster calculations and QM/EFP-MD simulations. J Phys Chem B 117:289–295

    Article  CAS  Google Scholar 

  44. Choi CH, Re S, Rashid MHO, Li H, Feig M, Sugita Y (2013) Solvent electronic polarization effects on Na+–Na+ and Cl–Cl pair associations in aqueous solution. J Phys Chem B 117:9273–9279

    Article  CAS  Google Scholar 

  45. Ghosh MK, Choi TH, Choi CH (2015) Like-charge ion pairs of hydronium and hydroxide in aqueous solution? Phys Chem Chem Phys 17:16233–16237

    Article  CAS  Google Scholar 

  46. Ghosh MK, Choi JH, Choi CH, Cho M (2015) Ion pair structures in aqueous KSCN solution: classical and quantum mechanical/molecular mechanical molecular dynamics simulation study. Bull Korean Chem Soc 36:944–949

    CAS  Google Scholar 

  47. Ghosh MK, Uddin N, Choi CH (2012) Hydrophobic and hydrophilic associations of a methanol pair in aqueous solution. J Phys Chem B 116:14254–14260

    Article  CAS  Google Scholar 

  48. Uddin N, Choi TH, Choi CH (2013) Direct absolute pKa predictions and proton transfer mechanisms of small molecules in aqueous solution by QM/MM-MD. J Phys Chem B 117:6269–6275

    Article  CAS  Google Scholar 

  49. Uddin N, Kim J, Sung BJ, Choi TH, Choi CH, Kang H (2014) Comparative proton transfer efficiencies of hydronium and hydroxide in aqueous solution: proton transfer vs brownian motion. J Phys Chem B 118:13671–13678

    Article  CAS  Google Scholar 

  50. Ghosh MK, Lee J, Choi CH, Cho M (2012) Direct simulations of anharmonic infrared spectra using quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD): methanol in water. J Phys Chem A 116:8965–8971

    Article  CAS  Google Scholar 

  51. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  52. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16:1339–1350

    Article  CAS  Google Scholar 

  53. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  54. Balabin RM (2009) Conformational equilibrium in glycine: focal-point analysis and ab initio limit. Chem Phys Lett 479:195–200

    Article  CAS  Google Scholar 

  55. Kim CK, Park BH, Lee HW, Kim CK (2011) Comprehensive studies on the free energies of solvation and conformers of glycine: a theoretical study. Bull Korean Chem Soc 32:1985–1992

    Article  CAS  Google Scholar 

  56. Wei KH, Li R, Xin X, Jing YY (2010) Density functional theory study of 1:1 glycine-water complexes in the gas phase and in solution. Sci China Chem 53(2):383–395

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation Grant funded by the Korean government (MSIP) (Project Nos. 2007-0056095 and 2012M3C1A6035358).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Hoon Choi or Cheol Ho Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M.K., Choi, T.H. & Choi, C.H. Conformational free energy surfaces of non-ionized glycine in aqueous solution. Theor Chem Acc 135, 103 (2016). https://doi.org/10.1007/s00214-016-1857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1857-1

Keywords

Navigation