Skip to main content
Log in

Mechanism studies of the chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene under aerobic conditions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of the reaction of N-tosyl aziridines with aldehyde catalyzed by nucleophilic carbene under aerobic conditions was investigated using B97D method. Two pathways were studied based on experimental reports, and the results show the first pathway is the best one. In the first pathway, the aziridine ring-opening step is the rate-determining step with the free energy of 18.3 kcal mol−1. The addition step of one oxygen molecule to olefin forms the singlet state compound. The oxygen molecule in this system can be utilized as a source of an oxygen atom for the carboxylate product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller AW, Nguyen ST (2004) Org Lett 6:2301–2304

    Article  CAS  Google Scholar 

  2. Yadav VK, Sriramurthy V (2005) J Am Chem Soc 127:16366–16367

    Article  CAS  Google Scholar 

  3. Munegumi T, Azumaya I, Kato T, Masu H, Saito S (2006) Org Lett 8:379–382

    Article  CAS  Google Scholar 

  4. Maas H, Bensimon C, Alper H (1998) J Org Chem 63:17–20

    Article  CAS  Google Scholar 

  5. Evans DA, Faul MM, Bilodeau MT (1991) J Org Chem 56:6744–6746

    Article  CAS  Google Scholar 

  6. Evans DA, Faul MM, Bilodeau MT (1994) J Am Chem Soc 116:2742–2753

    Article  CAS  Google Scholar 

  7. Evans DA, Faul MM, Bilodeau MT, Andersson BA, Barnes DM (1993) J Am Chem Soc 115:5328–5329

    Article  CAS  Google Scholar 

  8. Li Z, Quan RW, Jacobsen EN (1995) J Am Chem Soc 117:5889–5890

    Article  CAS  Google Scholar 

  9. Quan RW, Li Z, Jacobsen EN (1996) J Am Chem Soc 118:8156–8157

    Article  CAS  Google Scholar 

  10. Hansen KB, Finney NS, Jacobsen EN (1995) Angew Chem 107:750–752

    Article  Google Scholar 

  11. Hansen KB, Finney NS, Jacobsen EN (1995) Angew Chem Int Ed Engl 34:676–678

    Article  CAS  Google Scholar 

  12. Lowenthal RE, Masamune S (1991) Tetrahedron Lett 32:7373–7376

    Article  CAS  Google Scholar 

  13. Juhl K, Hazell RG, Jørgensen KA (1999) J Chem Soc Perkin Trans 1:2293–2297

    Article  Google Scholar 

  14. Sndergren JM, Alonso DA, Andersson PG (1997) Tetrahedron Asymmetry 8:3563–3565

    Article  Google Scholar 

  15. Ghorai MK, Das K, Shukla D (2007) J Org Chem 72:5859–5862

    Article  CAS  Google Scholar 

  16. Doyle MP, Chapman BJ, Hu W, Peterson CS, McKervey MA, Garcia CF (1999) Org Lett 1:1327–1329

    Article  CAS  Google Scholar 

  17. Pirrung MC, Zhang J (1992) Tetrahedron Lett 33:5987–5990

    Article  CAS  Google Scholar 

  18. Guthikonda K, DuBois J (2002) J Am Chem Soc 124:13672–13673

    Article  CAS  Google Scholar 

  19. Au SM, Huang JS, Yu WY, Fung WH, Che CM (1999) J Am Chem Soc 121:9120–9132

    Article  CAS  Google Scholar 

  20. Liang JL, Yu XQ, Che CM (2002) Chem Commun 2:124–125

    Article  Google Scholar 

  21. Katsuki T (2003) Synlett 3:281–297

    Article  Google Scholar 

  22. Noda K, Hosoya N, Irie R, Ito Y, Katsuki T (1993) Synlett 7:469–471

    Article  Google Scholar 

  23. Simonato JP, Pocaut J, Scheidt R, Marchon JC (1999) Chem Commun 989–990

  24. Leung AKY, Huang JS, Liang JL, Che CM, Zhou ZY (2003) Angew Chem 115:354–357

    Article  Google Scholar 

  25. Leung AKY, Huang JS, Liang JL, Che CM, Zhou ZY (2003) Angew Chem Int Ed 42:340–343

    Article  CAS  Google Scholar 

  26. Cui Y, He C (2003) J Am Chem Soc 125:16202–16203

    Article  CAS  Google Scholar 

  27. Roy S, Bera M (2010) J Org Chem 75:4402–4412

    Article  Google Scholar 

  28. Kim JH, Lee SB, Lee WK, Yoon DH, Ha HJ (2011) Tetrahedron 67:3553–3558

    Article  CAS  Google Scholar 

  29. Peruncheralathan S, Aurich S, Teller H, Schneider C (2013) Org Biomol Chem 11:2787–2803

    Article  CAS  Google Scholar 

  30. Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138–5175

    Article  CAS  Google Scholar 

  31. Houk KN, List B (2004) Acc Chem Res 37(8):487

    Article  CAS  Google Scholar 

  32. Seayad J, List B (2005) Org Biomol Chem 3:719–724

    Article  CAS  Google Scholar 

  33. Renzi P, Bella M (2012) Chem Commun 48:6881–6896

    Article  CAS  Google Scholar 

  34. Giacalone F, Gruttadauria M, Agrigento P, Noto R (2012) Chem Soc Rev 41:2406–2447

    Article  CAS  Google Scholar 

  35. Minakata S, Okada Y, Oderaotoshi Y, Komatsu M (2005) Org Lett 7:3509–3512

    Article  CAS  Google Scholar 

  36. Matsukawa S, Harada T, Yasuda S (2012) Org Biomol Chem 10:4886–4890

    Article  CAS  Google Scholar 

  37. Minakata S, Murakami Y, Satake M, Hidaka I, Okada Y, Komatsu M (2009) Org Biomol Chem 7:641–643

    Article  CAS  Google Scholar 

  38. Matsukawa S, Tsukamoto K (2009) Org Biomol Chem 7:3792–3796

    Article  CAS  Google Scholar 

  39. Wu J, Sun XY, Xia HG (2005) Eur J Org Chem 22:4769–4772

    Article  Google Scholar 

  40. Wang Z, Cui YT, Xu ZB, Qu J (2008) J Org Chem 73:2270–2274

    Article  CAS  Google Scholar 

  41. Wu J, Sun XY, Ye SQ, Sun W (2006) Tetrahedron Lett 47(28):4813–4816

    Article  CAS  Google Scholar 

  42. Liu YK, Li R, Yue L, Li BJ, Chen YC, Wu Y, Ding LS (2006) Org Lett 8:1521–1524

    Article  Google Scholar 

  43. Wang Y, Zheng L, Wei D, Tang M (2015) Org Chem Front 2:874–884

    Article  CAS  Google Scholar 

  44. Wei DH, Lei BL, Tang MS, Zhan CG (2012) J Am Chem Soc 134:10436–10450

    Article  CAS  Google Scholar 

  45. Wang Y, Wei DH, Li ZY, Zhu YY, Tang MS (2014) J Phys Chem A 118:4288–4300

    Article  CAS  Google Scholar 

  46. Liu CH, Han PL, Wu XM, Tang MS (2014) Comp Theor Chem 1050:39–45

    Article  CAS  Google Scholar 

  47. Li Y, Du WT, Deng WP (2012) Tetrahedron 68:3611–3615

    Article  CAS  Google Scholar 

  48. Lin L, Li Y, Du WT, Deng WP (2010) Tetrahedron Lett 51:3571–3574

    Article  CAS  Google Scholar 

  49. Knappke CEI, Imami A, von Wangelin AJ (2012) Chem Cat Chem 4:937–941

    CAS  Google Scholar 

  50. De Sarkar S, Biswas A, Samanta RC, Studer A (2013) Chem Eur J 19:4664–4678

    Article  Google Scholar 

  51. Grimme S (2006) J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  53. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  54. Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Shoji M, Koizumi K, Kawakami T, Okumura M, Yamaguchi K (2009) Int J Quantum Chem 109:3641–3648

    Article  CAS  Google Scholar 

  55. Saito T, Kataoka Y, Nakanishi Y, Matsui T, Kitagawa Y, Kawakami T, Okumura M, Yamaguchi K (2010) Chem Phys 368:1

    Article  CAS  Google Scholar 

  56. Daniel EH, Thomas CC (2012) J Phys Chem A 116:4922–4929

    Article  Google Scholar 

  57. Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Accts 99:95–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the Foundation of Henan Educational Committee of China (No. 16A150044) and the Foundation of Xuchang University of China (No. 2015102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Han, P., Liu, Y. et al. Mechanism studies of the chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene under aerobic conditions. Theor Chem Acc 135, 59 (2016). https://doi.org/10.1007/s00214-016-1820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1820-1

Keywords

Navigation