Skip to main content
Log in

Orthogonality-constrained Hartree–Fock and perturbation theory for high-spin open-shell excited states

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present the orthogonality-constrained Hartree–Fock (HF) method for excited states in a combination with the Møller–Plesset-like perturbation theory for the correlation energy. This developed “HF + MP2” formalism for excited states allows for the treatment of both ground and excited states in a balanced manner. Unlike a previous work (Glushkov in Chem Phys Lett 287:189, 1998), our interest has shifted toward highly doubly excited states of atoms and doubly ionized core hole molecular states which are attractive from the experimental point of view. The accuracy of the method is demonstrated by calculations of more than 30 highly excited states of the He and Li atoms and about 10 doubly excited core hole states of some diatomic molecules (CO, NO and LiF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gidopoulos NI, Papaconstantinou PG, Gross EKU (2002) Phys Rev Lett 88:33003

    Article  CAS  Google Scholar 

  2. Chattopadhyay S, Mahapatra US, Chaudhuri RK (2012) Theor Chem Acc 131:1213

    Article  Google Scholar 

  3. Roos BO (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 725–764

    Chapter  Google Scholar 

  4. Pahari D, Chattopadhyay S, Das S, Mukherjee D, Mahapatra US (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 581–633

    Chapter  Google Scholar 

  5. Piecuch P, Kowalski K (2002) Int J Mol Sci 3:676

    Article  CAS  Google Scholar 

  6. Lyakh DI, Musial M, Lotrich VF, Bartlett RJ (2012) Chem Rev 112:182

    Article  CAS  Google Scholar 

  7. Hoffmann MR, Datta D, Das S, Mukherjee D, Szabados A, Rolik Z, Surjan PR (2009) J Chem Phys 131:204104

    Article  Google Scholar 

  8. Kobayashi M, Szabados A, Nakai H, Surjan PR (2010) J Chem Theory Comput 6:2024

    Article  CAS  Google Scholar 

  9. Shull H, Löwdin P-O (1958) Phys Rev 110:1466

    Article  CAS  Google Scholar 

  10. Glushkov VN (1998) Chem Phys Lett 1998(287):189

    Article  Google Scholar 

  11. Glushkov VN, Gidopoulos N, Wilson S (2008) In: Wilson S, Grout PJ, Delgado-Barrio G, Maruani J, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, Pt. 2. Springer, Dordrecht, p 451

    Google Scholar 

  12. Glushkov VN (2002) J Math Chem 31:91

    Article  CAS  Google Scholar 

  13. Glushkov VN (2002) Opt Spectrosc 93:11

    Article  CAS  Google Scholar 

  14. Glushkov VN, Gidopoulos N, Wilson S (2008) In: Wilson S, Grout PJ, Delgado-Barrio G, Maruani J, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, Pt. I. Springer, Dordrecht, p 429

    Google Scholar 

  15. Roothaan CCJ (1960) Rev Mod Phys 32:179

    Article  Google Scholar 

  16. Hunt WJ, Goddard WA (1969) Chem Phys Lett 3:414

    Article  CAS  Google Scholar 

  17. Huzinaga S, Arnau C (1971) J Chem Phys 54:1948

    Article  CAS  Google Scholar 

  18. Morokuma K, Iwata S (1972) Chem Phys Lett 16:192

    Article  CAS  Google Scholar 

  19. Mrozek J, Golebiewski A (1977) Int J Quantum Chem 12:207

    Article  CAS  Google Scholar 

  20. Firsht D, McWeeny R (1976) Mol Phys 32:1637

    Article  CAS  Google Scholar 

  21. Davidson ER, Stenkamp LZ (1976) Int J Quantum Chem Symp 10:21

    Article  CAS  Google Scholar 

  22. Davidson ER, McMurchie EL (1985) Excit States 5:1

    Google Scholar 

  23. Colle R, Fortunelli A, Salvetti O (1987) Theor Chim Acta 71:467

    Article  CAS  Google Scholar 

  24. Colle R, Fortunelli A, Salvetti O (1989) Theor Chim Acta 75:323

    Article  CAS  Google Scholar 

  25. Gidopoulos N, Theophilou A (1994) Phil Mag 69:1067

    Article  CAS  Google Scholar 

  26. Assfeld X, Rivail J-L (1996) Chem Phys Lett 263:100

    Article  CAS  Google Scholar 

  27. Surjan PR (2000) Chem Phys Lett 325:120

    Article  CAS  Google Scholar 

  28. Ferre N, Assfeld X (2002) J Chem Phys 117:4119

    Article  CAS  Google Scholar 

  29. Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A 112:13164

    Article  CAS  Google Scholar 

  30. Tassi M, Theophilou I, Thanos S (2013) Int J Quantum Chem 113:690

    Article  CAS  Google Scholar 

  31. Richings GW, Karadakov PB (2007) Mol Phys 105:2363

    Article  CAS  Google Scholar 

  32. Richings GW, Karadakov PB (2013) Theor Chem Acc 132:1400

    Article  Google Scholar 

  33. Glushkov VN, Levy M (2007) J Chem Phys 126:174106

    Article  CAS  Google Scholar 

  34. Staroverov VN, Glushkov VN (2010) J Chem Phys 133:244104

    Article  Google Scholar 

  35. Evangelista FA, Shushkov R, Tully JC (2013) J Phys Chem A 113:690

    Google Scholar 

  36. Cullen J, Krykunov M, Ziegler T (2011) Chem Phys 391:11

    Article  CAS  Google Scholar 

  37. Cohen M, Kelly PS (1965) Can J Phys 43:1867

    Article  CAS  Google Scholar 

  38. Tatewaki H, Koga T, Sakai Y, Thakkar AJ (1994) J Chem Phys 101:4945

    Article  CAS  Google Scholar 

  39. Fock VA (1940) Z Exp Teor Fiz 10:961

    Google Scholar 

  40. Glushkov VN (1997) Chem Phys Lett 273:122

    Article  CAS  Google Scholar 

  41. Lauderdale WJ, Stanton JF, Gauss J, Watts JD, Bartlett RJ (1991) Chem Phys Lett 187:21

    Article  CAS  Google Scholar 

  42. Murray C, Davidson ER (1991) Chem Phys Lett 187:451

    Article  CAS  Google Scholar 

  43. Andrews JS, Jayatilaka D, Bone RGA, Handy NC, Amos RD (1991) Chem Phys Lett 183:423

    Article  CAS  Google Scholar 

  44. Knowles PJ, Andrews JS, Amos RD, Handy NC, Pople JA (1991) Chem Phys Lett 186:130

    Article  CAS  Google Scholar 

  45. Glushkov VN (2004) Int J Quantum Chem 99:236

    Article  CAS  Google Scholar 

  46. Deng J, Gilbert ATB, Gill PMW (2009) Int J Quantum Chem 109:1915

    Article  CAS  Google Scholar 

  47. Glushkov VN, Wilson S (2006) In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics. Recent advances in the theory of chemical and physical systems. Springer, Dordrecht, p 107

    Google Scholar 

  48. Burgers A, Wintgen D, Rost J-M (1995) J Phys B: At Mol Opt Phys 28:3163

    Article  Google Scholar 

  49. Puchalski M, Kedziera D, Pachucki K (2010) Phys Rev A 28:062509

    Article  Google Scholar 

  50. Cederbaum LS, Tarantelli F, Sgamellotti A, Schrimer J (1986) J Chem Phys 85:6513

    Article  CAS  Google Scholar 

  51. Tashiro M, Ehara M, Fukuzawa H, Ueda K, Buth C, Kryzhevoi NV, Cederbaum LS (2010) J Chem Phys 132:184302

    Article  Google Scholar 

  52. Tashiro M, Ehara M, Ueda K (2010) Chem Phys Lett 496:217

    Article  CAS  Google Scholar 

  53. Berrah N, Fang L, Murphy B, Osipov T, Ueda K, Kukk E, Feifel R, van der Meulen P, Salen P, Schmidt HT, Thomas RD, Larsson M, Richter R, Prince KC, Bozek JD, Bostedt C, Wada S, Piancastelli MN, Tashiro M, Ehara M (2011) Proc Natl Acad Sci 108:16912

    Article  CAS  Google Scholar 

  54. Glushkov VN (2007) Comput Lett 3:65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

With this manuscript, the authors want to thank Professor Peter Surjan for his tremendous contribution to quantum theory, especially on constrained (localized) wave functions and on the development of post-Hartree–Fock methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Assfeld.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, V.N., Assfeld, X. Orthogonality-constrained Hartree–Fock and perturbation theory for high-spin open-shell excited states. Theor Chem Acc 135, 3 (2016). https://doi.org/10.1007/s00214-015-1759-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1759-7

Keywords

Navigation