Skip to main content
Log in

First-principles study of trimethylamine adsorption on anatase TiO2 nanorod surfaces

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanorods are widely employed in many energy-related applications thanks to their peculiar electronic and physicochemical properties. Here we report a periodic DFT and DFT-D study of the three most exposed surfaces of stoichiometric anatase TiO2 nanorods, i.e., (100), (001) and (101). On these surfaces, we investigated the adsorption of a tertiary amine (trimethylamine, TMA): Energetic, structural and electronic features have been characterized, paying particular attention on the effects of dispersion forces on the adsorption process. We found evidence of the formation of a coordinative bond between the molecules and the titanium site of adsorption. As expected, the inclusion of dispersion correction strongly enhances the adsorption process. Moreover, in some cases TMA adsorption introduces new electronic states at the edge of the valence band. Overall, our results provide new insights on the interactions between TiO2 nanorods and nitrogen compounds, which have many scientific and technological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  2. Primet M, Pichat P, Mathieu MV (1971) Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. J Phys Chem 75(9):1216–1220

    Article  CAS  Google Scholar 

  3. Mathieu MV, Primet M, Pichat P (1971) Infrared study of the surface of titanium dioxides. II. Acidic and basic properties. J Phys Chem 75(9):1221–1226

    Article  CAS  Google Scholar 

  4. Oliver PM, Watson GW, Toby Kelsey E, Toby Kelsey SC (1997) Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J Mater Chem 7(3):563–568

    Article  CAS  Google Scholar 

  5. Henderson MA (2011) A surface science perspective on photocatalysis. Surf Sci Rep 66(6–7):185–297

    Article  CAS  Google Scholar 

  6. Gong X-Q, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109(42):19560–19562

    Article  CAS  Google Scholar 

  7. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112(11):5919–5948

    Article  CAS  Google Scholar 

  8. Selloni A, Vittadini A, Grätzel M (1998) The adsorption of small molecules on the TiO2 anatase (101) surface by First-principles molecular dynamics. Surf Sci 402–404:219–222

    Article  Google Scholar 

  9. Homann T, Bredow T, Jug K (2004) Adsorption of small molecules on the anatase (100) surface. Surf Sci 555(1–3):135–144

    Article  CAS  Google Scholar 

  10. Thomas AG, Syres KL (2012) Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem Soc Rev 41(11):4207–4217

    Article  CAS  Google Scholar 

  11. Wahab HS, Bredow T, Aliwi SM (2008) Computational investigation of water and oxygen adsorption on the anatase TiO2 (100) surface. J Mol Struc THEOCHEM 868(1–3):101–108

    Article  CAS  Google Scholar 

  12. Luschtinetz R, Gemming S, Seifert G (2011) Anchoring functional molecules on TiO2 surfaces: a comparison between the carboxylic and the phosphonic acid group. Eur Phys J Plus 126(10):1–13

    Article  CAS  Google Scholar 

  13. Tanner RE, Liang Y, Altman EI (2002) Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2(001). Surf Sci 506(3):251–271

    Article  CAS  Google Scholar 

  14. Miller KL, Musgrave CB, Falconer JL, Medlin JW (2011) Effects of water and formic acid adsorption on the electronic structure of anatase TiO2(101). J Phys Chem C 115(6):2738–2749

    Article  CAS  Google Scholar 

  15. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (2000) Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B 104(6):1300–1306

    Article  CAS  Google Scholar 

  16. Capecchi G, Faga MG, Martra G, Coluccia S, Iozzi MF, Cossi M (2007) Adsorption of CH3COOH on TiO2: IR and theoretical investigations. Res Chem Intermed 33(3–1):269–284

    Article  CAS  Google Scholar 

  17. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3(8):1049–1051

    Article  CAS  Google Scholar 

  18. Chen XB, Lou YB, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv Funct Mater 15(1):41–49

    Article  CAS  Google Scholar 

  19. Huang D-G, Liao S-J, Liu J-M, Dang Z, Petrik L (2006) Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J Photochem Photobiol, A 184(3):282–288

    Article  CAS  Google Scholar 

  20. Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982

    Article  CAS  Google Scholar 

  21. Shearer JC, Fisher MJ, Hoogeland D, Fisher ER (2010) Composite SiO2/TiO2 and amine polymer/TiO2 nanoparticles produced using plasma-enhanced chemical vapor deposition. Appl Surf Sci 256(7):2081–2091

    Article  CAS  Google Scholar 

  22. Gutiérrez-Tauste D, Domènech X, Domingo C, Ayllón JA (2008) Dopamine/TiO2 hybrid thin films prepared by the liquid phase deposition method. Thin Solid Films 516(12):3831–3835

    Article  CAS  Google Scholar 

  23. Seyedjamali H, Pirisedigh A (2011) In situ sol-gel fabrication of new poly(amide–ether–imide)/titania (TiO2) nanocomposite thin films containing l-leucine moieties. Colloid Polym Sci 289(1):15–20

    Article  CAS  Google Scholar 

  24. Mallakpour S, Zarei M (2013) Novel chiral poly(amide-imide) nanocomposites reinforced with silicate layers and TiO2 nanoparticles based on N-trimellitylimido-l-isoleucine. J Reinf Plast Compos 32(8):574–582

    Article  CAS  Google Scholar 

  25. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  CAS  Google Scholar 

  26. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  CAS  Google Scholar 

  27. Docampo P, Guldin S, Leijtens T, Noel NK, Steiner U, Snaith HJ (2014) Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices. Adv Mater 26(24):4013–4030

    Article  CAS  Google Scholar 

  28. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399

    Article  CAS  Google Scholar 

  29. Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H, Yang S (2013) All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5(8):3245–3248

    Article  CAS  Google Scholar 

  30. Bai Y, Mora-Seró I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114(19):10095–10130

    Article  CAS  Google Scholar 

  31. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  32. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125(47):14539–14548

    Article  CAS  Google Scholar 

  33. Liu J, Luo J, Yang W, Wang Y, Zhu L, Xu Y, Tang Y, Hu Y, Wang C, Chen Y, Shi W (2015) Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells. J Mater Sci Technol 31(1):106–109

    Article  Google Scholar 

  34. Sun C, Liu L-M, Selloni A, Lu GQ, Smith SC (2010) Titania-water interactions: a review of theoretical studies. J Mater Chem 20(46):10319–10334

    Article  CAS  Google Scholar 

  35. Bourikas K, Kordulis C, Lycourghiotis A (2014) Titanium dioxide (anatase and rutile): surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts. Chem Rev 114(19):9754–9823

    Article  CAS  Google Scholar 

  36. De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A (2014) Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem Rev 114(19):9708–9753

    Article  CAS  Google Scholar 

  37. Cao X, Hamers RJ (2001) Silicon surfaces as electron acceptors: dative bonding of amines with Si(001) and Si(111) surfaces. J Am Chem Soc 123(44):10988–10996

    Article  CAS  Google Scholar 

  38. Hossain MZ, Machida S-I, Yamashita Y, Mukai K, Yoshinobu J (2003) Purely site-specific chemisorption and conformation of trimethylamine on Si(100)C(4×2). J Am Chem Soc 125(31):9252–9253

    Article  CAS  Google Scholar 

  39. Lozano J, Early D, Craig JH, Wang PW, Kimberlin KR (2005) HREELS, TPD and ESD study of electron-induced decomposition of trimethylamine on Si(100) at 100 K. Surf Interface Anal 37(4):366–373

    Article  CAS  Google Scholar 

  40. Mui C, Han JH, Wang GT, Musgrave CB, Bent SF (2002) Proton transfer reactions on semiconductor surfaces. J Am Chem Soc 124(15):4027–4038

    Article  CAS  Google Scholar 

  41. Nunney TS, Birtill JJ, Raval R (1999) Infrared studies of sub-monolayer methylamine and trimethylamine adsorption on Ni(111). Surf Sci 427–428:282–287

    Article  Google Scholar 

  42. Hallac BF, Asscher M (2007) The chemistry of trimethylamine on Ru(001) and O/Ru(001). Langmuir 23(17):8891–8898

    Article  CAS  Google Scholar 

  43. Erley W, Xu R, Hemminger JC (1997) Thermal decomposition of trimethylamine on Pt(111): spectroscopic identification of surface intermediates. Surf Sci 389(1–3):272–286

    Article  Google Scholar 

  44. Kang D-H, Chatterjee B, Herceg E, Trenary M (2003) Adsorption and decomposition of trimethylamine on Pt(111): formation of dimethylaminocarbyne (CN(CH3)2). Surf Sci 540(1):23–38

    Article  CAS  Google Scholar 

  45. Erdogan R, Ozbek O, Onal I (2010) A periodic DFT study of water and ammonia adsorption on anatase TiO2 (001) slab. Surf Sci 604(11–12):1029–1033

    Article  CAS  Google Scholar 

  46. Erdogan R, Onal I (2011) An ONIOM and DFT study of water and ammonia adsorption on anatase TiO2 (001) cluster. Int J Quantum Chem 111(9):2149–2159

    Article  CAS  Google Scholar 

  47. Onal I, Soyer S, Senkan S (2006) Adsorption of water and ammonia on TiO2-anatase cluster models. Surf Sci 600(12):2457–2469

    Article  CAS  Google Scholar 

  48. Wanbayor R, Ruangpornvisuti V (2010) Adsorption of di-, tri- and polyatomic gases on the anatase TiO2 (001) and (101) surfaces and their adsorption abilities. J Mol Struc THEOCHEM 952(1–3):103–108

    Article  CAS  Google Scholar 

  49. Wanbayor R, Ruangpornvisuti V (2010) Adsorption of CO, H2, N2O, NH3 and CH4 on the anatase TiO2 (001) and (101) surfaces and their competitive adsorption predicted by periodic DFT calculations. Mater Chem Phys 124(1):720–725

    Article  CAS  Google Scholar 

  50. Hemeryck A, Motta A, Swiatowska J, Pereira-Nabais C, Marcus P, Costa D (2013) Diaminoethane adsorption and water substitution on hydrated TiO2: a thermochemical study based on first-principles calculations. Phys Chem Chem Phys 15(26):10824–10834

    Article  CAS  Google Scholar 

  51. Mo J-J, Xue Y, Liu X-Q, Qiu N-X, Chu W, Xie H-P (2013) Quantum chemical studies on adsorption of CO2 on nitrogen-containing molecular segment models of coal. Surf Sci 616:85–92

    Article  CAS  Google Scholar 

  52. Cortés-Arriagada D, Sanhueza L, Santander-Nelli M (2013) Modeling the physisorption of bisphenol a on graphene and graphene oxide. J Mol Model 19(9):3569–3580

    Article  CAS  Google Scholar 

  53. Tao J, Cuan Q, Halpegamage S, Addou R, Gong X-Q, Batzill M (2013) Combined surface science and DFT study of the adsorption of dinitrotoluene (2,4-DNT) on rutile TiO2(110): molecular scale insight into sensing of explosives. J Phys Chem C 117(32):16468–16476

    Article  CAS  Google Scholar 

  54. Zang J, Nair S, Sholl DS (2013) Prediction of water adsorption in copper-based metal-organic frameworks using force fields derived from dispersion-corrected DFT calculations. J Phys Chem C 117(15):7519–7525

    Article  CAS  Google Scholar 

  55. Vogt J (2012) The structure of N2 adsorbed on the rumpled NaCl(100) surface—a combined LEED and DFT-D study. J Chem Phys 137(17):174705–174708

    Article  CAS  Google Scholar 

  56. Quiñonero D, Frontera A, Deyà PM (2012) Feasibility of single-walled carbon nanotubes as materials for CO2 adsorption: a DFT study. J Phys Chem C 116(39):21083–21092

    Article  CAS  Google Scholar 

  57. De-Li C, Al-Saidi WA, Johnson JK (2012) The role of van der waals interactions in the adsorption of noble gases on metal surfaces. J Phys Condens Matter 24(42):424211

    Article  CAS  Google Scholar 

  58. Kristyán S, Pulay P (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem Phys Lett 229(3):175–180

    Article  Google Scholar 

  59. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  60. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104–154119

    Article  CAS  Google Scholar 

  61. Barone V, Casarin M, Forrer D, Pavone M, Sambi M, Vittadini A (2009) Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J Comput Chem 30(6):934–939

    Article  CAS  Google Scholar 

  62. Casarin M, Marino MD, Forrer D, Sambi M, Sedona F, Tondello E, Vittadini A, Barone V, Pavone M (2010) Coverage-dependent architectures of iron phthalocyanine on Ag(110): a comprehensive STM/DFT study. J Phys Chem C 114(5):2144–2153

    Article  CAS  Google Scholar 

  63. Conesa JC (2010) The relevance of dispersion interactions for the stability of oxide phases. J Phys Chem C 114(51):22718–22726

    Article  CAS  Google Scholar 

  64. Forrer D, Vittadini A (2011) 2D vs. 3D titanium dioxide: role of dispersion interactions. Chem Phys Lett 516(1–3):72–75

    Article  CAS  Google Scholar 

  65. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  66. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  67. Kresse G, Furthmüller J (1996) Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  68. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  69. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  70. Perdew JP, Burke K, Ernzerhof M (1997) Erratum: generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  71. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  72. Blöchl PE, Först CJ, Schimpl J (2003) Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull Mater Sci 26(1):33–41

    Article  Google Scholar 

  73. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  74. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys. Rev. B 13(12):5188–5192

    Article  Google Scholar 

  75. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223–16233

    Article  Google Scholar 

  76. Sorescu DC, Al-Saidi WA, Jordan KD (2011) CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study. J Chem Phys 135(12):124701

    Article  CAS  Google Scholar 

  77. Ma J-G, Zhang C-R, Gong J-J, Yang B, Zhang H-M, Wang W, Wu Y-Z, Chen Y-H, Chen H-S (2014) The adsorption of α-cyanoacrylic acid on anatase TiO2 (101) and (001) surfaces: a density functional theory study. J Chem Phys 141(23):234705

    Article  CAS  Google Scholar 

  78. Tian FH, Wang X, Zhao W, Zhao L, Chu T, Yu S (2013) Adsorption of 2-propanol on anatase TiO2 (101) and (001) surfaces: a density functional theory study. Surf Sci 616:76–84

    Article  CAS  Google Scholar 

  79. Ikäläinen S, Laasonen K (2013) A DFT study of adsorption of perylene on clean and altered anatase (101) TiO2. Phys Chem Chem Phys 15(28):11673–11678

    Article  CAS  Google Scholar 

  80. Makov G, Payne MC (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B 51(7):4014–4022

    Article  CAS  Google Scholar 

  81. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02; Gaussian, Inc., Wallingford CT

  82. Dunning JTH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  83. Kendall RA, Dunning JTH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  84. Woon DE, Dunning JTH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371

    Article  CAS  Google Scholar 

  85. Peterson KA, Woon DE, Dunning JTH (1994) Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2 → H2+H Reaction. J Chem Phys 100(10):7410–7415

    Article  CAS  Google Scholar 

  86. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  Google Scholar 

  87. Momma K, Izumi F (2011) Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  88. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247

    Article  CAS  Google Scholar 

  89. Labat F, Baranek P, Domain C, Minot C, Adamo C (2007) Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals. J. Chem. Phys. 126(15):154703–154712

    Article  CAS  Google Scholar 

  90. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63(15):155409

    Article  CAS  Google Scholar 

  91. Lazzeri M, Vittadini A, Selloni A (2002) Erratum: structure and energetics of stoichiometric TiO2 anatase surfaces [Phys Rev B 63, 155409 (2001)]. Phys Rev B 65(11):119901

    Article  CAS  Google Scholar 

  92. Burdett JK, Hughbanks T, Miller GJ, Richardson JW, Smith JV (1987) Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc 109(12):3639–3646

    Article  CAS  Google Scholar 

  93. Arlt T, Bermejo M, Blanco MA, Gerward L, Jiang JZ, Staun Olsen J, Recio JM (2000) High-pressure polymorphs of anatase TiO2. Phys Rev B 61(21):14414–14419

    Article  CAS  Google Scholar 

  94. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  95. Lazzeri M, Selloni A (2001) Stress-driven reconstruction of an oxide surface: the anatase TiO2(001)-(1×4) surface. Phys Rev Lett 87(26):266105

    Article  CAS  Google Scholar 

  96. Herman GS, Sievers MR, Gao Y (2000) Structure determination of the two-domain (1×4) anatase TiO2(001) surface. Phys Rev Lett 84(15):3354–3357

    Article  CAS  Google Scholar 

  97. Ruzycki N, Herman GS, Boatner LA, Diebold U (2003) Scanning tunneling microscopy study of the anatase (100) surface. Surf Sci 529(1–2):L239–L244

    Article  CAS  Google Scholar 

  98. Tanner RE, Sasahara A, Liang Y, Altman EI, Onishi H (2002) Formic acid adsorption on anatase TiO2(001)−(1×4) thin films studied by NC-AFM and STM. J Phys Chem B 106(33):8211–8222

    Article  CAS  Google Scholar 

  99. Labat F, Baranek P, Adamo C (2008) Structural and electronic properties of selected rutile and anatase TiO2 surfaces: an Ab initio investigation. J Chem Theory Comput 4(2):341–352

    Article  CAS  Google Scholar 

  100. Kachurovskaya NA, Mikheeva EP, Zhidomirov GM (2002) Cluster molecular modeling of strong interaction for VOx/TiO2 supported catalyst. J Mol Catal A Chem 178(1–2):191–198

    Article  CAS  Google Scholar 

  101. Fahmi A, Minot C (1994) A theoretical investigation of water adsorption on titanium dioxide surfaces. Surf Sci 304(3):343–359

    Article  CAS  Google Scholar 

  102. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81(14):2954–2957

    Article  CAS  Google Scholar 

  103. Gong X-Q, Selloni A (2007) Role of steps in the reactivity of the anatase TiO2 (101) surface. J Catal 249(2):134–139

    Article  CAS  Google Scholar 

  104. Arrouvel C, Digne M, Breysse M, Toulhoat H, Raybaud P (2004) Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–TiO2 and Γ-alumina catalytic supports. J Catal 222(1):152–166

    Article  CAS  Google Scholar 

  105. Zhao Z, Li Z, Zou Z (2012) A theoretical study of water adsorption and decomposition on the low-index stoichiometric anatase TiO2 surfaces. J Phys Chem C 116(13):7430–7441

    Article  CAS  Google Scholar 

  106. Posternak M, Baldereschi A, Delley B (2009) Dissociation of water on anatase TiO2 nanoparticles: the role of undercoordinated Ti atoms at edges. J Phys Chem C 113(36):15862–15867

    Article  CAS  Google Scholar 

  107. Tang H, Berger H, Schmid PE, Lévy F, Burri G (1993) Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87(9):847–850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge funding from the Italian Ministry of Research and University (MIUR) under Grants FIRB Futuro in Ricerca (RBFR122HFZ) and PRIN (2012NB3KLK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pavone.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2015_1721_MOESM1_ESM.docx

Supplementary material 1 Comparison of PAW potentials to describe the bulk properties; validation of the plane-wave code for isolated molecules; further details about water adsorption (contributions to adsorption energies; charge density difference plots; PDOSs); comparison between TMA adsorption with θ = 1/4 and 1/12 ML; comparison between TMA (our data) and ammonia adsorption (literature). (docx 1976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triggiani, L., Muñoz-García, A.B., Agostiano, A. et al. First-principles study of trimethylamine adsorption on anatase TiO2 nanorod surfaces. Theor Chem Acc 134, 119 (2015). https://doi.org/10.1007/s00214-015-1721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1721-8

Keywords

Navigation